Non-equilibrium molecular dynamics (NEMD) simulation method is used to investigate the in-plane thermal conductivity of graphene with different structures. The simulation results demonstrate that, as the length of simulated region increasing, the in-plane thermal conductivity of graphene will become larger. Through investigating the influence of width and edge structure on the in-plane thermal conductivity of graphene, it is also found that the thermal conductivity of wider simulated sample is higher than that of the narrower, and with similar length, the in-plane thermal conductivity of armchair graphene is a little higher than that of zigzag one. The effect of temperature on the thermal conductivity of graphene is also studied in this work.

This content is only available via PDF.
You do not currently have access to this content.