Nanofluid is a colloidal solution of nano-sized solid particles in liquids. Ar-Al nanofluid is a promising heat transport fluid in the fields of low-temperature engineering. A simplified model based on the equilibrium molecular dynamics (EMD) simulation is constructed to calculate the thermal conductivity of argon suspension containing aluminum nanoparticles. The numerical method is verified by comparing the numerical results with the existing numerical results and the experimental data of the base fluid. The influence of various nanoparticle loadings is obtained and the results show that the thermal conductivity with 1% nanoparticle loading enhances up to 31% compared with the base fluid. The heat current autocorrelation functions converge well for the basefluid and nanofluid. Furthermore, interesting distinct oscillations are obtained especially at higher nanoparticle loading. The significant role of the interaction between the fluid atoms and the solid nanoparticle rather than Brownian dynamics motion of the nanoparticle in yielding the high thermal conductivity of nanofluid is numerically revealed.

This content is only available via PDF.
You do not currently have access to this content.