Spray cooling is a candidate solution for high heat flux cooling applications, and previous work has investigated the impact of parameters of conical sprays such as volumetric flux and Sauter mean diameter on heat transfer performance. However, there has been little work on the impact of drainage and spray orientation on spray performances. In addition, conical sprays are not very practical for large area coverage in compact packages, so this study, presents a novel arrangment that uses linear sprays impinging at an angle such that fluid management and uniform droplet coverage of large areas are both improved. Results for the heat transfer coefficient and CHF of a constrained, practical implementation of a spray array (as opposed to a laboratory-only geometry) are presented for FC-72, FC-40 and HFE-7000.

This content is only available via PDF.
You do not currently have access to this content.