Metallic phase change materials (PCMs) have been demonstrated as an excellent alternative to act as a passive cooling system for pulse power applications. The possibility of integrating metallic PCMs, directly on top of a heat source, reducing the thermal resistance between the device and the cooling solution, could result in a significant improvement in thermal management for transient applications. However, the effectiveness of this method of implementation will depend on the quality of the interface between the metallic PCM and the heat source.

For this work, a metallic PCM (49Bi/18Pb/12Sn/21In-Bi/Pb/Sn/In for simplicity) was placed directly on top of a device that has a layer of silicon nitride on the top. The device was pulsed with powers of 40W – 160W (84W/cm2 – 338W/cm2) with a 20 ms duration. After reaching the maximum power, the device was pulsed for a second cycle, and the temperature profiles were compared. Micrographical inspections, at the interlayer between the silicon nitride and metallic PCM, were performed before and after the pulses and compared.

A maximum temperature of ≈20–25% higher was observed in the performance (at 80W) after pulse cycling. A visual inspection at the mating surfaces, between the metallic PCM and device, showed a clear difference between the contact surfaces before and after pulses. Significant voiding at the PCM interfacial layer was observed after cyclic loading which is believed to be the cause of the recorded increment in maximum temperature.

This content is only available via PDF.
You do not currently have access to this content.