Abstract

In this paper, two different types of model-based trajectory control schemes are designed and compared for the control of robotic manipulators. First, two PD-based control schemes and one sliding-mode control scheme are designed, where Lyapunov stability theorem is used as a mathematical design tool. Then, the performances of the PD-based control schemes are compared to those of the sliding-mode control schemes with realistic computer simulations. The global asymptotic stability and the boundedness of all internal signals of the designed control schemes are shown with Lyapunov stability theorem.

This content is only available via PDF.
You do not currently have access to this content.