Sediment erosion is recognized as a serious engineering problem in slurry handling such as screw centrifugal pump, which has wide efficiency region and non-plugging performance. In the present study, the screw centrifugal pump was simulated based on the Euler-Lagrange method. The Mclaury model was adopted for the erosion prediction of flow passage components. By analyzing the correlation factor functions contained in the erosion model and performing some preliminary research with a simplified model, particle velocity, particle shape factor and particle concentration were selected as the influencing factors to analysis the quantitative relationship among particle parameters, erosion wear and performance of screw centrifugal pump. The results show that the erosion of volute casing is higher than impeller, and the erosion rate of suction side is higher than pressure side. The particles velocity is positively correlated with erosion wear and pump performance reduction rate. While the increase of particles shape factor shows the opposite trend. Erosion rate is found to be increases sharply and then slowly when particles concentration increases, because of the adhesion effect of sand particles in the volute casing inhibits the total erosion wear. The increase of erosion rate promoted the reduction rate of pump performance, and the pump efficiency decreased more significantly when the erosion rate increased to a certain extent. The results of this study are of great significance for further optimization of hydraulic design and structural design for screw centrifugal pump.

This content is only available via PDF.
You do not currently have access to this content.