During walking, human lower limbs accelerate and decelerate alternately, during which period the human body does positive and negative work, respectively. Muscles provide power to all motions and cost metabolic energy both in accelerating and decelerating the lower limbs. In this work, the lower-limb biomechanics of walking was analyzed and it revealed that if the negative work performed during deceleration can be harnessed using some assisting device to then assist the acceleration movement of the lower limb, the total metabolic cost of the human body during walking can be reduced. A flexible lower-limb exoskeleton was then proposed; it is worn in parallel to the lower limbs to assist human walking without consuming external power. The flexible exoskeleton consists of elastic and damping components that are similar to physiological structure of a human lower limb. When worn on the lower limb, the exoskeleton can partly replace the function of the lower limb muscles and scavenge kinetic energy during lower limb deceleration to assist the acceleration movement. Besides, the generator in the exoskeleton, serving as a damping component, can harvest kinetic energy to produce electricity. A prototype of the flexible exoskeleton was developed, and experiments were carried out to validate the analysis. The experiments showed that the exoskeleton could reduce the metabolic cost by 3.12% at the walking speed of 4.5 km/h.

This content is only available via PDF.
You do not currently have access to this content.