This paper presents results from theoretical and numerical studies of a single-phase, temperature sensitive magnetic fluid operating under steady-state laminar flow conditions in a partially heated thermomagnetic circulation loop under the influence of an external magnetic field (created by a solenoid). A one-dimensional theoretical model has been developed using scaling arguments to characterize thermomagnetic circulation in this loop in terms of the geometric length scales, magnetic fluid properties, and strength of the imposed magnetic field. In parallel to this theoretical analysis, supporting numerical simulations using COMSOL Multiphysics simulation software have been undertaken to obtain data for use in this 1D model. A correlation for the non-dimensional heat transfer (Nusselt number) as a function of the appropriate magnetic Rayleigh number and a correlation for the mass flow rate based on the system’s properties are developed.

This content is only available via PDF.
You do not currently have access to this content.