The characteristics of human skin are easily changed by the states of the body because it is very sensitive to environmental transformation. And the development of the condition measurement technology of human skin is very important for improvement in QOL because it reflects body condition. Then, various devices for the condition measurement of human skin had been developed but there was no technique which can evaluate the skin by objective parameter easily.

In this paper, spherical indentation testing is studied to evaluate the dimension and rigidity of thin soft-tissues like human skin. Here, the Hertz contact theory is functionally expanded to evaluate indentations for the thin tissues. In the expansions, the technique used for evaluating the thickness of finite specimens is first explained by analyzing the experimental results of indentations. Then, the Young’s modulus of the tissue with finite thickness is theoretically derived by defining an equivalent indentation strain for the analysis of the indentation process. The expansions are examined to evaluate its reliability by applying them to measure Young’s modulus of some thin materials. Furthermore, this technology is applied to the elasticity investigation of the human skin. Especially, the measurement results of elasticity characteristics of the skin of human face are shown as the first report. The influences of sex and ultraviolet rays and so on are discussed to reveal the mechanics of human skin in this report. Moreover, it is discussed about the validity of the device which measures the elasticity of the skin of human face.

This content is only available via PDF.
You do not currently have access to this content.