This numerical investigation explores the hydrodynamic and thermal boundary layers characteristics of a liquid flow with Micro-Encapsulated Phase Change Material (MEPCM). Unlike pure liquids, the heat transfer characteristics of MEPCM slurry can not be simply presented in terms of corresponding dimensionless controlling parameters such as Peclet number. In the presence of phase change particles, the controlling parameters’ values change significantly along the tube length due to the phase change. As a result, the hydrodynamic and thermal boundary layers are significantly affected by the changing parameters. The numerical results reveal that the growth of the thermal boundary layer for MEPCM slurries is different than for pure liquids. The presence of MEPCM in the working fluid slows the growth of the thermal boundary layer and extends the thermal entry length. The local heat transfer coefficient strongly depends on the location of the melting zone interface.

This content is only available via PDF.
You do not currently have access to this content.