We propose shadow edge lithography (SEL) as a wafer-scale nanofabrication method. The shadow effect of “line-ofsight” in high-vacuum evaporation is analyzed theoretically to predict the geometric distributions of the fabricated nanoscale gaps. In the experiment, nanoscale gap patterns are created by the shadow of Al edges which are prepatterned using e-beam evaporation and the conventional ultraviolet lithography. Feasibility of the SEL is demonstrated by the fabrication of nanogaps having the width ranging from 15 to 100 nm on 4-inch Si wafers. Furthermore, by using the height differences in the prepatterned Al edges to compensate the geometric distributions of the shadow effect, it is demonstrated that the uniformity tolerance in the nanogap width can be ±1 nm or ±5% across the 4-inch Si wafers at a resolution down to 20 nm. The experimental results agree well with the theoretical prediction considering the virtual source during the e-beam evaporation. Upon the nanogap fabrication, arrays of nanochannels are obtained by reactive ion etching (RIE) using the evaporated Al layers as the etching mask. Our results show that that the evaporated Al layers can be used as the RIE mask to transfer the nanoscale patterns with a high yield and throughput. Thus, the SEL provides a robust method for wafer-scale fabrication especially for sub 50-nm structures.

This content is only available via PDF.
You do not currently have access to this content.