Abstract

This paper presents simulations of co-injection molding problems computed by a three-dimensional finite element method. The polymer melts behave as generalized Newtonian fluids and non-isothermal effects are taken into account. In addition to the momentum, mass and energy equations, we solve two transport equations tracking the polymer/air and skin/core polymers interfaces. Solutions are shown for a center gated rectangular plate. The effect of varying the melt/mold temperature and the ratio between the skin and core materials is investigated. The solution obtained for the same skin and core materials is compared with those in which viscosities of core and skin materials are different. Finally, the solution for the co-injection of a C-shaped plate is presented.

This content is only available via PDF.
You do not currently have access to this content.