Abstract

A nonlinear model of an Earthmoving Vehicle Powertrain Simulator is developed using both first principles as well as I/O data. The model is an interconnection of subsystem models, which consist of a prime mover, a variable-displacement pump, proportional flow valves, and fixed-displacement motor models. In addition, a typical drive or tractive load of an earthmoving vehicle is also presented and implemented in the system as one of the loads. Efforts have been directed to develop a simple model in order to cater to developing and testing powertrain controllers as well as studying the dynamic behavior of such systems. An initial control design approach utilizing the Linear Quadratic technique is also presented. The controller is aimed at regulating load speeds in presence of a step load disturbance. The simulation results of the compensated system response are presented.

This content is only available via PDF.
You do not currently have access to this content.