Abstract

Numerical simulations of flow modification devices on a simplified ground vehicle are conducted. A parametric study on the size and distance upstream of conventional wheel deflectors is conducted on a simplified body at a Reynolds number of 1.6 × 105 to observe the impact on drag coefficient. Results show that wheel drag is decreased as the height of the conventional wheel deflector is increased. Additionally, the further the conventional wheel deflector is from the wheelhouse, the more sensitive the wheel is to changes in drag coefficient. The conventional wheel deflectors are then replaced by air-jets which are used to manipulate the flow field in and near the wheelhouse to reduce the wheel drag of the simplified body. The air-jet successfully decreases the wheel drag and it is observed that the closer the air-jet is to the wheelhouse the less impact it has on the single wheel drag, but the greater the impact on the overall drag of the simplified body.

This content is only available via PDF.
You do not currently have access to this content.