Abstract

The brain is encased in the skull and suspended and supported by a series of three fibrous tissue layers: Dura mater, Arachnoid and Pia matter, known as the Meninges. Arachnoid trabeculae are strands of collagen tissues located in a space between the arachnoid and the pia matter known as the subarachnoid space (SAS). The SAS trabeculae play an important role in damping and reducing the relative movement of the brain with respect to the skull. The SAS is filled with cerebrospinal fluid (CSF), which is a colorless fluid that surrounds all over the brain inside the subarachnoid spaces. This fluid stabilizes the shape and position of the brain during head movements.

To address normal and pathological SAS functions, under conditions where an electrical stimulation is applied, this study proposes a novel fully-coupled electro-Fluid-Structure Interaction (eFSI) modeling approach to investigate the response of the system of SAS-CSF under the applied electric current, which is provided by the transcranial Direct Current Stimulation (tDCS) technique according to the following steps. First, a two-dimensional channel model of the brain SAS with several trabecular morphologies is numerically simulated using the finite element (FE) method. The channel model is then subjected to a specific electric field intensity by applying a 1∼2mA direct current. COMSOL Multiphysics v. 5.3a software is used to perform the coupled eFSI numerical simulation in order to investigate the effects of the applied electric field on the flow of the CSF, thereby showing the deflection of the trabeculae inside the channel model.

The results of this study demonstrate that the induced electric field causes less deflection of the trabeculae by exacerbating the velocity profile of the cerebrospinal fluid flow and decreasing the flow pressure applied on each trabecula inside the trabecular SAS channel. This electro-mechanostructural modeling approach is significant because of the applied current on the channel walls that can directly affect the CSF flow. In fact, the results of this study can open up a new horizon for future research on disorders like hydrocephalus, which involves an unusual production rate of the CSF inside the brain. This disorder may be controlled by applying an electric current in the brain, using one of the available brain stimulation techniques, i.e. tDCS. By using an electrical stimulation technique, one might control the dynamics of brain function and, therefore, regulate dysfunctionality through the first eFSI multiphysics modeling approach proposed in this study. Briefly, the brain SAS may be considered as a novel region for electrotherapeutic and electromechanical neuromodulation.

This content is only available via PDF.
You do not currently have access to this content.