A small-scale Direct Contact Membrane Distillation (DCMD) system was built to investigate its water distillation performance for varying inlet temperatures and flow rates of feed and permeate streams, and salinity. A counterflow configuration between the feed and permeate streams was used to achieve an efficient heat exchange. A two-dimensional Computational Fluid Dynamics (CFD) model was developed and validated using the experimental results. The numerical results were compared with the experiments and found to be in good agreement. From this study, the most desirable conditions for distilled water production were found to be a higher feed water temperature, lower permeate temperature, higher flow rate and less salinity. The feed water temperature had a greater impact on the water production than the permeate water temperature. The numerical simulation showed that the water mass flux was maximum at the inlet of the feed stream where the feed temperature was the highest and rapidly decreased as the feed temperature decreased.

This content is only available via PDF.
You do not currently have access to this content.