Experiments were conducted in a closed loop spray cooling system working with deionized water as a working fluid. This study was performed to investigate the effect of the spraying parameters, such as Sauter mean diameter (SMD), the droplet velocity, and the residual velocity on the spray cooling heat transfer in the non-boiling region. Thermal effects on plain and modified surfaces with circular grooves were examined under different operating conditions. The inlet pressure of the working fluid was varied from 78.6 kPa to 183.515kPa, and the inlet temperature was kept between 21–22 °C. The distance between the nozzle and the target surface 10 mm. The results showed that increasing the coolant inlet pressure increases the droplet velocity and the number of droplets produced while decreasing the droplet size. As a consequence of these changes, increasing inlet pressure improved the heat transfer characteristics of both surfaces.

This content is only available via PDF.
You do not currently have access to this content.