This work presents a novel optimal design framework that treats uncertain dynamical systems described by ordinary differential equations. Uncertainty in multibody dynamical systems comes from various sources, such as: system parameters, initial conditions, sensor and actuator noise, and external forcing. The inclusion of uncertainty in design is of paramount practical importance because all real-life systems are affected by it. Designs that ignore uncertainty often lead to poor robustness and suboptimal performance. In this work uncertainties are modeled using Generalized Polynomial Chaos and are solved quantitatively using a least-square collocation method. The uncertainty statistics are explicitly included in the optimization process. Systems that are nonlinear, have active constraints, or opposing design objectives are shown to benefit from the new framework. Specifically, using a constraint-based multi-objective formulation, the direct treatment of uncertainties during the optimization process is shown to shift, or off-set, the resulting Pareto optimal trade-off curve. A nonlinear vehicle suspension design problem, subject to parametric uncertainty, illustrates the capability of the new framework to produce an optimal design that accounts for the entire family of systems within the associated probability space.
Skip Nav Destination
ASME 2011 International Mechanical Engineering Congress and Exposition
November 11–17, 2011
Denver, Colorado, USA
Conference Sponsors:
- ASME
ISBN:
978-0-7918-5495-2
PROCEEDINGS PAPER
Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems
Dennis Hong
Dennis Hong
Virginia Tech, Blacksburg, VA
Search for other works by this author on:
Joe Hays
Virginia Tech, Blacksburg, VA
Adrian Sandu
Virginia Tech, Blacksburg, VA
Corina Sandu
Virginia Tech, Blacksburg, VA
Dennis Hong
Virginia Tech, Blacksburg, VA
Paper No:
IMECE2011-62789, pp. 737-744; 8 pages
Published Online:
August 1, 2012
Citation
Hays, J, Sandu, A, Sandu, C, & Hong, D. "Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems." Proceedings of the ASME 2011 International Mechanical Engineering Congress and Exposition. Volume 9: Transportation Systems; Safety Engineering, Risk Analysis and Reliability Methods; Applied Stochastic Optimization, Uncertainty and Probability. Denver, Colorado, USA. November 11–17, 2011. pp. 737-744. ASME. https://doi.org/10.1115/IMECE2011-62789
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Parametric Design Optimization of Uncertain Ordinary Differential Equation Systems
J. Mech. Des (August,2012)
Application of Polynomial Chaos Expansion to Tolerance Analysis and Synthesis in Compliant Assemblies Subject to Loading
J. Mech. Des (March,2015)
Special Issue: Sensitivity Analysis and Uncertainty Quantification
J. Comput. Nonlinear Dynam (February,2019)
Related Chapters
A Collaborative Framework for Distributed Multiobjective Combinatorial Optimization
International Conference on Computer and Computer Intelligence (ICCCI 2011)
Application of Parametric Design in Contemporary Architecture Design
International Conference on Optimization Design (ICOD 2010)
Advances in the Stochastic Modeling of Constitutive Laws at Small and Finite Strains
Advances in Computers and Information in Engineering Research, Volume 2