Understanding the dynamic response of materials under blast and impact loading is of interest for both military and civilian applications. In the case of blast loading, the mitigation characteristics of materials employed in personal protective equipment (PPE) is of particular importance. Without adequate protection, exposure of the head to blast waves may result in or contribute to brain tissue damage leading to traumatic brain injury (TBI). The development of simple but representative laboratory experiments that can be used to study the mechanical response of different materials and/or material combinations to blast loading could be very useful for the design of PPE such as helmets. This paper presents a basic experimental setup that can be conveniently used to perform such studies using small scale compressed gas blasts. An open end shock tube is employed to generate the blasts used to load flat plate samples placed in a special rigid holder. Acceleration time histories at selected locations in the sample are used to generate data to compare the dynamic response and blast mitigation effectiveness of different specimens. High speed schlieren video is used to correlate the arrival of the shock wave and air flow that follows with the motion of the test sample.

This content is only available via PDF.
You do not currently have access to this content.