The bone remodeling process provides for various functions such as mineral homeostasis, damage repair, and adaptation to mechanical loading. At present, a clear link between the mechanical stimulation of bones and the biochemical response is not fully understood. Computational simulations can provide a means to test hypotheses and gain insight into processes that are difficult to examine experimentally. The objective of this work is to predict the effect of damage and strain as the stimulus for regulating the cellular signaling activity of remodeling. In this study, potential signaling pathways that mediate this cellular activity were incorporated in a hybrid cellular automaton (HCA) algorithm. Biological rules were implemented in this model to control recruitment, differentiation, and activation of osteoclasts. Prominent processes for describing recruitment and inhibition of the bone cells, as reported from experimental studies, are utilized. This work focuses on the resorption of a damaged site on a trabecular strut.

This content is only available via PDF.
You do not currently have access to this content.