An experimental study was conducted to investigate the characteristics of gas-liquid two-phase flow in 200 μm square microchannels thermoformed in polymer chips. Polymer microfluidic chips were replicated using hot embossing of poly(methyl methacrylate) (PMMA) with micromachined brass mold inserts. The thermoformed microchannels in polymer chips typically had greater surface roughnesses compared to microchannels etched in the silicon substrate. Two more different polymer chips, a direct micromachined PMMA chip and a chip hot embossed with a LIGA nickel mold insert, were fabricated to compare surface characteristics of the sidewalls and bottoms of fabricated microchannels. Deionized water and dry air were injected separately into the chips at superficial velocities of jL = 0.005 – 0.11 m/s for the liquid and jG = 0.003 – 16.67 m/s for the gas. Capillary bubbly, plug, plug-annular, annular, and dry flows were observed in the microchannels. Two-phase flow pattern maps and transitions between flow regimes were determined for fixed values of the homogeneous liquid fraction defined as βL = QL/(QL + QG) where QL and QG are the liquid and gas flow rates, and the liquid Weber number fraction defined as γL = WeL/(WeL + WeG) where WeL and WeG are the liquid and gas Weber number. The surface roughness in submicron range showed minor effect in comparison with the previous work in terms of the gas-liquid two-phase flow patterns and transitions between flow regimes. Dimensionless bubble sizes scaled by the width of observation microchannel were plotted against the homogeneous liquid fraction (βL). A scaling law for the bubble length developed for the previous work with T-junctions was applicable to the present work used the cross junction for generation of segmented flow. With a fixed value of the fitting parameter, scaling law showed a good agreement with the experimental data. Deviation of the scaled bubble length from predicted bubble length line and irregularity of bubble length with a fixed homogeneous liquid fraction increased with higher gas flow rates.
Skip Nav Destination
ASME 2007 International Mechanical Engineering Congress and Exposition
November 11–15, 2007
Seattle, Washington, USA
Conference Sponsors:
- ASME
ISBN:
0-7918-4305-X
PROCEEDINGS PAPER
Gas-Liquid Two-Phase Flow in Hot Embossed Square Microchannels
Namwon Kim,
Namwon Kim
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Estelle T. Evans,
Estelle T. Evans
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Daniel S. Park,
Daniel S. Park
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Dimitris E. Nikitopoulos,
Dimitris E. Nikitopoulos
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Steven A. Soper,
Steven A. Soper
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Michael C. Murphy
Michael C. Murphy
Louisiana State University, Baton Rouge, LA
Search for other works by this author on:
Namwon Kim
Louisiana State University, Baton Rouge, LA
Estelle T. Evans
Louisiana State University, Baton Rouge, LA
Daniel S. Park
Louisiana State University, Baton Rouge, LA
Dimitris E. Nikitopoulos
Louisiana State University, Baton Rouge, LA
Steven A. Soper
Louisiana State University, Baton Rouge, LA
Michael C. Murphy
Louisiana State University, Baton Rouge, LA
Paper No:
IMECE2007-42158, pp. 427-435; 9 pages
Published Online:
May 22, 2009
Citation
Kim, N, Evans, ET, Park, DS, Nikitopoulos, DE, Soper, SA, & Murphy, MC. "Gas-Liquid Two-Phase Flow in Hot Embossed Square Microchannels." Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition. Volume 11: Micro and Nano Systems, Parts A and B. Seattle, Washington, USA. November 11–15, 2007. pp. 427-435. ASME. https://doi.org/10.1115/IMECE2007-42158
Download citation file:
8
Views
0
Citations
Related Proceedings Papers
Related Articles
Process Robustness of Hot Embossing Microfluidic Devices
J. Manuf. Sci. Eng (June,2010)
The Effects of Inlet Geometry and Gas-Liquid Mixing on Two-Phase Flow in Microchannels
J. Fluids Eng (April,2009)
Nucleate Boiling in Microchannels
J. Heat Transfer (August,2005)
Related Chapters
Towards Real-Time Optical Measurement of Microbubble Content in Hydrodynamic Test Facilities
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
LC-MS/MS on Microfluidic Device for Chloramphenicol Determination in Milk and Honey Samples Based on Molecular Imprinted Polymers
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Various Applications of the Membrane Theory
Stress in ASME Pressure Vessels, Boilers, and Nuclear Components