Semiconductor nanowires like zinc oxide nanowires are potential materials for future nanoscale sensors and actuators. Due to their unique length scale, they are expected to have length-scale dependent mechanical properties. In this paper, we report experimental investigations on the mechanical properties of zinc oxide nanowires. We have designed a MEMS test-bed for mechanical characterization of nanowires and use a microscale version of pick-and-place as a generic specimen preparation and manipulation technique. We performed experiments on zinc oxide nanowires inside a scanning electron microscope (SEM) and estimated the Young's modulus to be approximately 21 GPa and the fracture strain to vary from 5 % to 15 %.
Volume Subject Area:
Microelectromechanical Systems
1.
Goldberger
J.
He
R.
Zhang
Y.
Lee
S.
Yan
H.
Choi
H.-J.
Yang
P.
Single-crystal gallium nitride nanotubes
,” Nature
, vol. 422
, pp. 599
–602
, 2003
.2.
Xia
Y.
Yang
P.
Sun
Y.
Wu
Y.
Mayers
B.
Gates
B.
Yin
Y.
Kim
F.
Yan
H.
One-dimensional nanostructures: Synthesis, characterization, and applications
,” Advanced Materials
, vol. 15
, pp. 353
–389
, 2003
.3.
Lee
S.-K.
Choi
H.-J.
Pauzauskie
P.
Yang
P.
Cho
N.-K.
Park
H.-D.
Suh
E.-K.
Lim
K.-Y.
Lee
H.-J.
Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach
,” Physica Status Solidi C: Conferences
, vol. 1
, pp. 2775
–2778
, 2004
.4.
Wang
Z. L.
Gao
R. P.
Poncharal
P.
de Heer
W. A.
Dai
Z. R.
Pan
Z. W.
Mechanical and electrostatic properties of carbon nanotubes and nanowires
,” Materials Science and Engineering C
, vol. 16
, pp. 3
–10
, 2001
.5.
Wang
Z. L.
Nanostructures of zinc oxide
,” Materials Today
, vol. 7
, pp. 26
–33
, 2004
.6.
Ozgur
U.
Alivov
Y. I.
Liu
C.
Teke
A.
Reshchikov
M. A.
Dogan
S.
Avrutin
V.
Cho
S.-J.
Morko
H.
A comprehensive review of ZnO materials and devices
,” Journal of Applied Physics
, vol. 98
, pp. 041301
041301
, 2005
.7.
Karpina
V. A.
Lazorenko
V. I.
Lashkarev
C. V.
Dobrowolski
V. D.
Kopylova
L. I.
Baturin
V. A.
Pustovoytov
S. A.
Karpenko
A. J.
Eremin
S. A.
Lytvyn
P. M.
Ovsyannikov
V. P.
Mazurenko
E. A.
Zinc oxide - Analogue of GaN with new perspective possibilities
,” Crystal Research and Technology
, vol. 39
, pp. 980
–992
, 2004
.8.
J. G. Lu, Z. Fan, P.-C. Chang, and D. Wang, “Electrical and optical properties of ZnO nanowires,” presented at Smart Materials III, Dec 13–15 2004, Sydney, Australia, 2005.
9.
Wang
Z. L.
Zinc oxide nanostructures: Growth, properties and applications
,” Journal of Physics Condensed Matter
, vol. 16
, pp. 829
–858
, 2004
.10.
Bai
X. D.
Gao
P. X.
Wang
Z. L.
Wang
E. G.
Dual-mode mechanical resonance of individual ZnO nanobelts
,” Applied Physics Letters
, vol. 82
, pp. 4806
–4808
, 2003
.11.
Song
J.
Wang
X.
Riedo
E.
Wang
Z. L.
Elastic Property of Vertically Aligned Nanowires
,” Nano Letters
, vol. 5
, pp. 1954
–1958
, 2005
.12.
Chen
C. Q.
Shi
Y.
Zhang
Y. S.
Zhu
J.
Yan
Y. J.
Size dependence of Young’s modulus in ZnO nanowires
,” Physical Review Letters
, vol. 96
, pp. 075505
075505
, 2006
.13.
Huang
Y.
Bai
X.
Zhang
Y.
In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles
,” Journal of Physics Condensed Matter
, vol. 18
, pp. 179
–184
, 2006
.14.
Tao
N. J.
He
H. X.
Shu
C.
Li
C. Z.
Adsorbate effect on the mechanical stability of atomically thin metallic wires
,” Journal of Electroanalytical Chemistry
, vol. 522
, pp. 26
–32
, 2002
.15.
Rodrigues
V.
Bettini
J.
Silva
P. C.
Ugarte
D.
Evidence for Spontaneous Spin-Polarized Transport in Magnetic Nanowires
,” Physical Review Letters
, vol. 91
, pp. 96801
–1
, 2003
.16.
G. Weiss and S. Brouer, “Influence of strain on conductance fluctuations in Bi-nanowires,” Physica B: Condensed Matter 22nd International Conference on Low Temperature Physics (LT-22), Aug 4–Aug 11 1999, vol. 284 (III), pp. 1736–1737, 2000.
17.
Salvetat
J.-P.
Kulik
A. J.
Bonard
J.-M.
Briggs
G. A. D.
Stockli
T.
Metenier
K.
Bonnamy
S.
Beguin
F.
Burnham
N. A.
Forro
L.
Elastic modulus of ordered and disordered multiwalled carbon nanotubes
,” Advanced Materials
, vol. 11
, pp. 161
–165
, 1999
.18.
Wu
B.
Heidelberg
A.
Boland
J. J.
Mechanical properties of ultrahigh-strength gold nanowires
,” Nature Materials
, vol. 4
, pp. 525
–529
, 2005
.19.
Shanmugham
S.
Jeong
J.
Alkhateeb
A.
Aston
D. E.
Polymer nanowire elastic moduli measured with digital pulsed force mode AFM
,” Langmuir
, vol. 21
, pp. 10214
–10218
, 2005
.20.
Feng
G.
Yong
Y.
Lee
C. J.
Cho
K.
Nix
W. D.
Mechanical properties of GaN and ZnO nanowires using nanoindentation
,” JOM
, vol. 56
, pp. 35
35
, 2004
.21.
Fang
T.-H.
Chang
W.-J.
Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning probe microscopy
,” Physica B: Condensed Matter
, vol. 352
, pp. 190
–199
, 2004
.22.
S. Bansal, E. Toimil-Molares, A. Saxena, and R. R. Tummala, “Nanoindentation of single crystal and polycrystalline copper nanowires,” presented at 55th Electronic Components and Technology Conference, ECTC, May 31–Jun 4 2005, Lake Buena Vista, FL, United States, 2005.
23.
Li
X.
Nardi
P.
Back
C.-W.
Kim
J.-M.
Kim
Y.-K.
Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope
,” Journal of Micromechanics and Microengineering
, vol. 15
, pp. 551
–556
, 2005
.24.
Mao
X. S.
Zhao
M.
Jiang
C. B.
Li
S.
Nanomechanical behaviour of piezoelectric nanowire
,” JOM
, vol. 56
, pp. 261
261
, 2004
.25.
H. J. Qi, K. B. K. Teo, K. K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson, and K. K. Gleason, “Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation,” presented at Proceedings of a Symposium on Dynamic Failure and Thin Film, Jan 16 2003, Pasadena, United States, 2003.
26.
Fischer-Cripps
A. C.
Review of analysis methods for sub-micron indentation testing
,” Vacuum
, vol. 58
, pp. 569
–585
, 2000
.27.
Demczyk
B. G.
Wang
Y. M.
Cumings
J.
Hetman
M.
Han
W.
Zettl
A.
Ritchie
R. O.
Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes
,” Materials Science and Engineering A
, vol. 334
, pp. 173
–178
, 2002
.28.
S. Lu, J. Chung, D. Dikin, J. Lee, and R. S. Ruoff, “An integrated MEMS system for in-situ mechanical testing of nanostructures,” presented at 3rd ASME Integrated Nanosystems Conference - Design, Synthesis, and Applications, Sep 22–24 2004, Pasadena, CA, United States, 2004.
29.
Zhu
Y.
Espinosa
H. D.
An electromechanical material testing system for in situ electron microscopy and applications
,” PNAS
, vol. 102
, pp. 14503
–14508
, 2005
.30.
Samuel
B. A.
Desai
A. V.
Haque
M. A.
Design and modeling of a MEMS pico-Newton loading/sensing device
,” Sensors and Actuators A: Physical
, vol. 127
, pp. 155
–162
, 2006
.31.
Desai
A. V.
Hague
M. A.
Test-bed for Mechanical Characterization of Nanowires
,” Journal of Nanosystems and Nanoengineering
, vol. 219
, pp. 57
–65
, 2006
.32.
Kulkarni
A. J.
Zhou
M.
Ke
F. J.
Orientation and size dependence of the elastic properties of zinc oxide nanobelts
,” Nanotechnology
, vol. 16
, pp. 2749
–2756
, 2005
.33.
Wu
H. A.
Molecular dynamics study on mechanics of metal nanowire
,” Mechanics Research Communications
, vol. 33
, pp. 9
–16
, 2006
.34.
Schro¨er
P.
Kru¨ger
P.
Pollmann
J.
Selfconsistent electronic-structure calculations of the (101− 0) surfaces of the wurtzite
,” Physical Review B (Condensed Matter and Materials Physics)
, vol. 49
, pp. 17092
–17101
, 1994
.35.
Jaffe
J. E.
Harrison
N. M.
Hess
A. C.
Ab initio study of ZnO (101−; 0) surface relaxation
,” Physical Review B (Condensed Matter and Materials Physics)
, vol. 49
, pp. 11153
–11158
, 1994
.36.
Meyer
B.
Marx
D.
Density-functional study of the structure and stability of ZnO surfaces
,” Physical Review B (Condensed Matter and Materials Physics)
, vol. 67
, pp. 035403
035403
, 2003
.37.
Sun
C. Q.
Zhou
J.
Tay
B. K.
Zeng
X. T.
Li
S.
Chen
T. P.
Bai
H. L.
Jiang
E. Y.
Bond-order-bondlength-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid
,” Journal of Physics Condensed Matter
, vol. 14
, pp. 7781
–7795
, 2002
.38.
Wang
Z. L.
Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - From materials to nanodevices
,” Advanced Materials
, vol. 15
, pp. 432
–436
, 2003
.39.
Kobiakov
I. B.
Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures
,” Solid State Communications
, vol. 35
, pp. 305
–310
, 1980
.40.
Zhou
L. G.
Huang
H.
Are surfaces elastically softer or stiffer?
,” Applied Physics Letters
, vol. 84
, pp. 1940
–1942
, 2004
.41.
Mukhopadhyay
A. K.
Chaudhuri
M. Ray
Seal
A.
Dalui
S. K.
Banerjee
M.
Phani
K. K.
Mechanical characterization of microwave sintered zinc oxide
,” Bulletin of Materials Science
, vol. 24
, pp. 125
–128
, 2001
.42.
Gadzhiev
G. G.
The thermal and elastic properties of zinc oxide-based ceramics at high temperatures
,” Teplofizika Vysokikh Temperatur
, vol. 41
, pp. 877
–882
, 2003
.43.
Miller
R. E.
Shenoy
V. B.
Size-dependent elastic properties of nanosized structural elements
,” Nanotechnology
, vol. 11
, pp. 139
–147
, 2000
.
This content is only available via PDF.
Copyright © 2006
by ASME
You do not currently have access to this content.