Semiconductor nanowires like zinc oxide nanowires are potential materials for future nanoscale sensors and actuators. Due to their unique length scale, they are expected to have length-scale dependent mechanical properties. In this paper, we report experimental investigations on the mechanical properties of zinc oxide nanowires. We have designed a MEMS test-bed for mechanical characterization of nanowires and use a microscale version of pick-and-place as a generic specimen preparation and manipulation technique. We performed experiments on zinc oxide nanowires inside a scanning electron microscope (SEM) and estimated the Young's modulus to be approximately 21 GPa and the fracture strain to vary from 5 % to 15 %.

1.
Goldberger
J.
,
He
R.
,
Zhang
Y.
,
Lee
S.
,
Yan
H.
,
Choi
H.-J.
, and
Yang
P.
, “
Single-crystal gallium nitride nanotubes
,”
Nature
, vol.
422
, pp.
599
602
,
2003
.
2.
Xia
Y.
,
Yang
P.
,
Sun
Y.
,
Wu
Y.
,
Mayers
B.
,
Gates
B.
,
Yin
Y.
,
Kim
F.
, and
Yan
H.
, “
One-dimensional nanostructures: Synthesis, characterization, and applications
,”
Advanced Materials
, vol.
15
, pp.
353
389
,
2003
.
3.
Lee
S.-K.
,
Choi
H.-J.
,
Pauzauskie
P.
,
Yang
P.
,
Cho
N.-K.
,
Park
H.-D.
,
Suh
E.-K.
,
Lim
K.-Y.
, and
Lee
H.-J.
, “
Gallium nitride nanowires with a metal initiated metal-organic chemical vapor deposition (MOCVD) approach
,”
Physica Status Solidi C: Conferences
, vol.
1
, pp.
2775
2778
,
2004
.
4.
Wang
Z. L.
,
Gao
R. P.
,
Poncharal
P.
,
de Heer
W. A.
,
Dai
Z. R.
, and
Pan
Z. W.
, “
Mechanical and electrostatic properties of carbon nanotubes and nanowires
,”
Materials Science and Engineering C
, vol.
16
, pp.
3
10
,
2001
.
5.
Wang
Z. L.
, “
Nanostructures of zinc oxide
,”
Materials Today
, vol.
7
, pp.
26
33
,
2004
.
6.
Ozgur
U.
,
Alivov
Y. I.
,
Liu
C.
,
Teke
A.
,
Reshchikov
M. A.
,
Dogan
S.
,
Avrutin
V.
,
Cho
S.-J.
, and
Morko
H.
, “
A comprehensive review of ZnO materials and devices
,”
Journal of Applied Physics
, vol.
98
, pp.
041301
041301
,
2005
.
7.
Karpina
V. A.
,
Lazorenko
V. I.
,
Lashkarev
C. V.
,
Dobrowolski
V. D.
,
Kopylova
L. I.
,
Baturin
V. A.
,
Pustovoytov
S. A.
,
Karpenko
A. J.
,
Eremin
S. A.
,
Lytvyn
P. M.
,
Ovsyannikov
V. P.
, and
Mazurenko
E. A.
, “
Zinc oxide - Analogue of GaN with new perspective possibilities
,”
Crystal Research and Technology
, vol.
39
, pp.
980
992
,
2004
.
8.
J. G. Lu, Z. Fan, P.-C. Chang, and D. Wang, “Electrical and optical properties of ZnO nanowires,” presented at Smart Materials III, Dec 13–15 2004, Sydney, Australia, 2005.
9.
Wang
Z. L.
, “
Zinc oxide nanostructures: Growth, properties and applications
,”
Journal of Physics Condensed Matter
, vol.
16
, pp.
829
858
,
2004
.
10.
Bai
X. D.
,
Gao
P. X.
,
Wang
Z. L.
, and
Wang
E. G.
, “
Dual-mode mechanical resonance of individual ZnO nanobelts
,”
Applied Physics Letters
, vol.
82
, pp.
4806
4808
,
2003
.
11.
Song
J.
,
Wang
X.
,
Riedo
E.
, and
Wang
Z. L.
, “
Elastic Property of Vertically Aligned Nanowires
,”
Nano Letters
, vol.
5
, pp.
1954
1958
,
2005
.
12.
Chen
C. Q.
,
Shi
Y.
,
Zhang
Y. S.
,
Zhu
J.
, and
Yan
Y. J.
, “
Size dependence of Young’s modulus in ZnO nanowires
,”
Physical Review Letters
, vol.
96
, pp.
075505
075505
,
2006
.
13.
Huang
Y.
,
Bai
X.
, and
Zhang
Y.
, “
In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles
,”
Journal of Physics Condensed Matter
, vol.
18
, pp.
179
184
,
2006
.
14.
Tao
N. J.
,
He
H. X.
,
Shu
C.
, and
Li
C. Z.
, “
Adsorbate effect on the mechanical stability of atomically thin metallic wires
,”
Journal of Electroanalytical Chemistry
, vol.
522
, pp.
26
32
,
2002
.
15.
Rodrigues
V.
,
Bettini
J.
,
Silva
P. C.
, and
Ugarte
D.
, “
Evidence for Spontaneous Spin-Polarized Transport in Magnetic Nanowires
,”
Physical Review Letters
, vol.
91
, pp.
96801
1
,
2003
.
16.
G. Weiss and S. Brouer, “Influence of strain on conductance fluctuations in Bi-nanowires,” Physica B: Condensed Matter 22nd International Conference on Low Temperature Physics (LT-22), Aug 4–Aug 11 1999, vol. 284 (III), pp. 1736–1737, 2000.
17.
Salvetat
J.-P.
,
Kulik
A. J.
,
Bonard
J.-M.
,
Briggs
G. A. D.
,
Stockli
T.
,
Metenier
K.
,
Bonnamy
S.
,
Beguin
F.
,
Burnham
N. A.
, and
Forro
L.
, “
Elastic modulus of ordered and disordered multiwalled carbon nanotubes
,”
Advanced Materials
, vol.
11
, pp.
161
165
,
1999
.
18.
Wu
B.
,
Heidelberg
A.
, and
Boland
J. J.
, “
Mechanical properties of ultrahigh-strength gold nanowires
,”
Nature Materials
, vol.
4
, pp.
525
529
,
2005
.
19.
Shanmugham
S.
,
Jeong
J.
,
Alkhateeb
A.
, and
Aston
D. E.
, “
Polymer nanowire elastic moduli measured with digital pulsed force mode AFM
,”
Langmuir
, vol.
21
, pp.
10214
10218
,
2005
.
20.
Feng
G.
,
Yong
Y.
,
Lee
C. J.
,
Cho
K.
, and
Nix
W. D.
, “
Mechanical properties of GaN and ZnO nanowires using nanoindentation
,”
JOM
, vol.
56
, pp.
35
35
,
2004
.
21.
Fang
T.-H.
and
Chang
W.-J.
, “
Nanolithography and nanoindentation of tantalum-oxide nanowires and nanodots using scanning probe microscopy
,”
Physica B: Condensed Matter
, vol.
352
, pp.
190
199
,
2004
.
22.
S. Bansal, E. Toimil-Molares, A. Saxena, and R. R. Tummala, “Nanoindentation of single crystal and polycrystalline copper nanowires,” presented at 55th Electronic Components and Technology Conference, ECTC, May 31–Jun 4 2005, Lake Buena Vista, FL, United States, 2005.
23.
Li
X.
,
Nardi
P.
,
Back
C.-W.
,
Kim
J.-M.
, and
Kim
Y.-K.
, “
Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope
,”
Journal of Micromechanics and Microengineering
, vol.
15
, pp.
551
556
,
2005
.
24.
Mao
X. S.
,
Zhao
M.
,
Jiang
C. B.
, and
Li
S.
, “
Nanomechanical behaviour of piezoelectric nanowire
,”
JOM
, vol.
56
, pp.
261
261
,
2004
.
25.
H. J. Qi, K. B. K. Teo, K. K. S. Lau, M. C. Boyce, W. I. Milne, J. Robertson, and K. K. Gleason, “Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation,” presented at Proceedings of a Symposium on Dynamic Failure and Thin Film, Jan 16 2003, Pasadena, United States, 2003.
26.
Fischer-Cripps
A. C.
, “
Review of analysis methods for sub-micron indentation testing
,”
Vacuum
, vol.
58
, pp.
569
585
,
2000
.
27.
Demczyk
B. G.
,
Wang
Y. M.
,
Cumings
J.
,
Hetman
M.
,
Han
W.
,
Zettl
A.
, and
Ritchie
R. O.
, “
Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes
,”
Materials Science and Engineering A
, vol.
334
, pp.
173
178
,
2002
.
28.
S. Lu, J. Chung, D. Dikin, J. Lee, and R. S. Ruoff, “An integrated MEMS system for in-situ mechanical testing of nanostructures,” presented at 3rd ASME Integrated Nanosystems Conference - Design, Synthesis, and Applications, Sep 22–24 2004, Pasadena, CA, United States, 2004.
29.
Zhu
Y.
and
Espinosa
H. D.
, “
An electromechanical material testing system for in situ electron microscopy and applications
,”
PNAS
, vol.
102
, pp.
14503
14508
,
2005
.
30.
Samuel
B. A.
,
Desai
A. V.
, and
Haque
M. A.
, “
Design and modeling of a MEMS pico-Newton loading/sensing device
,”
Sensors and Actuators A: Physical
, vol.
127
, pp.
155
162
,
2006
.
31.
Desai
A. V.
and
Hague
M. A.
, “
Test-bed for Mechanical Characterization of Nanowires
,”
Journal of Nanosystems and Nanoengineering
, vol.
219
, pp.
57
65
,
2006
.
32.
Kulkarni
A. J.
,
Zhou
M.
, and
Ke
F. J.
, “
Orientation and size dependence of the elastic properties of zinc oxide nanobelts
,”
Nanotechnology
, vol.
16
, pp.
2749
2756
,
2005
.
33.
Wu
H. A.
, “
Molecular dynamics study on mechanics of metal nanowire
,”
Mechanics Research Communications
, vol.
33
, pp.
9
16
,
2006
.
34.
Schro¨er
P.
,
Kru¨ger
P.
, and
Pollmann
J.
, “
Selfconsistent electronic-structure calculations of the (101 0) surfaces of the wurtzite
,”
Physical Review B (Condensed Matter and Materials Physics)
, vol.
49
, pp.
17092
17101
,
1994
.
35.
Jaffe
J. E.
,
Harrison
N. M.
, and
Hess
A. C.
, “
Ab initio study of ZnO (101; 0) surface relaxation
,”
Physical Review B (Condensed Matter and Materials Physics)
, vol.
49
, pp.
11153
11158
,
1994
.
36.
Meyer
B.
and
Marx
D.
, “
Density-functional study of the structure and stability of ZnO surfaces
,”
Physical Review B (Condensed Matter and Materials Physics)
, vol.
67
, pp.
035403
035403
,
2003
.
37.
Sun
C. Q.
,
Zhou
J.
,
Tay
B. K.
,
Zeng
X. T.
,
Li
S.
,
Chen
T. P.
,
Bai
H. L.
, and
Jiang
E. Y.
, “
Bond-order-bondlength-bond-strength (bond-OLS) correlation mechanism for the shape-and-size dependence of a nanosolid
,”
Journal of Physics Condensed Matter
, vol.
14
, pp.
7781
7795
,
2002
.
38.
Wang
Z. L.
, “
Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - From materials to nanodevices
,”
Advanced Materials
, vol.
15
, pp.
432
436
,
2003
.
39.
Kobiakov
I. B.
, “
Elastic, piezoelectric and dielectric properties of ZnO and CdS single crystals in a wide range of temperatures
,”
Solid State Communications
, vol.
35
, pp.
305
310
,
1980
.
40.
Zhou
L. G.
and
Huang
H.
, “
Are surfaces elastically softer or stiffer?
,”
Applied Physics Letters
, vol.
84
, pp.
1940
1942
,
2004
.
41.
Mukhopadhyay
A. K.
,
Chaudhuri
M. Ray
,
Seal
A.
,
Dalui
S. K.
,
Banerjee
M.
, and
Phani
K. K.
, “
Mechanical characterization of microwave sintered zinc oxide
,”
Bulletin of Materials Science
, vol.
24
, pp.
125
128
,
2001
.
42.
Gadzhiev
G. G.
, “
The thermal and elastic properties of zinc oxide-based ceramics at high temperatures
,”
Teplofizika Vysokikh Temperatur
, vol.
41
, pp.
877
882
,
2003
.
43.
Miller
R. E.
and
Shenoy
V. B.
, “
Size-dependent elastic properties of nanosized structural elements
,”
Nanotechnology
, vol.
11
, pp.
139
147
,
2000
.
This content is only available via PDF.
You do not currently have access to this content.