This paper presents an efficient method for simulating the bone remodeling procedure. This method is based on the trajectorial architecture theory of optimization and employs a truss-like model for bone. The truss was subjected to external loads including 5 point loads simulating the hip joint contact forces and 3 muscular forces at the attachment sites of the muscles to the bone. The strain in the links was calculated and the links with high strains were identified. The initial truss is modified by introducing new links wherever the strain exceeds a prescribed value; each link undergoing a high strain is replaced by several new links by adding new nodes around it using the Delaunay method. Introduction of these new links to the truss, which is conducted according to a weighted arithmetic mean formula, strengthens the structure and reduces the strain within the respective zone. This procedure was repeated for several steps. Convergence was achieved when there were no critical links remaining. This method was used to study the 2D shape of proximal femur in the frontal plane and provided results that are consistent with CT data. The proposed method exhibited capability similar to more complicated conventional nonlinear algorithms, however, with a much higher convergence rate and lower computation costs.

1.
Wolff, J.L., (original publication in 1892), “The law of bone remodeling” (traducted by Marquet, P., Furlong, R.), Springer, Berlin.
2.
Weinans
H.
,
Huiskes
R.
,
Grootenboer
H.
,
1992
, “
Effects of material properties of femoral hip components on bone remodeling
”,
Journal of Orthopaedics Research
,
10
(
6)
, pp.
845
853
.
3.
Weinans
H.
,
Huiskes
R.
,
Grootenboer
H.
,
1994
, “
Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling
”,
Journal of Biomechanical Engineering
,
116
(
4)
, pp.
393
400
.
4.
Kerner
J.
,
Huiskes
R.
,
van Lenthe
G. H.
,
Weinans
H.
,
van Rietbergen
B.
,
Engh
C. A.
,
Amis
A. A.
,
1999
, “
Correlation between pre-operative periprosthetic bone density and post-operative bone loss in THA can be explained by strain-adaptive remodeling
,
Journal of Biomechanics
,
32
, pp.
695
703
.
5.
Bitsakos
C.
,
Kerner
J.
,
Fisher
I.
,
Amis
A. A.
,
2005
, “
The effect of muscle loading on the simulation of bone remodeling in the proximal femur
”,
Journal of Biomechanics
,
38
, pp.
133
139
.
6.
Ralf Decking a, Wolfhart Puhl a, Ulrich Simon b, Lutz E. Claes, 2006, “Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems”, Clinical Biomechanics, In Press.
7.
Duda
G. N.
,
Heller
M.
,
Albinger
J.
,
Schulz
O.
,
Schneider
E.
,
Claes
L.
,
1998
, “
Infuence of muscle forces on femoral strain distribution
,
Journal of Biomechanics
”,
31
, pp.
841
846
.
8.
Xinghua
Z.
,
He
G.
,
Dong
Z.
,
Bingzhao
G.
,
2002
, “
A study of the effect of non-linearities in the equation of bone remodeling
”,
Journal of Biomechanics
,
35
(
7)
, pp.
951
960
.
9.
Xinghua
Z.
,
He
G.
,
Bingzhao
G.
,
2005
, “
The application of topology optimization on the quantitative description of the external shape of bone structure
”,
Journal of Biomechanics
,
38
, pp.
1612
1620
.
10.
Britton
J. R.
,
Walsh
L. A.
,
Prendergast
P. J.
,
2003
, “
Mechanical simulation of muscle loading on the proximal femur: analysis of cemented femoral component migration with and without muscle loading
”,
Clinical Biomechanics
,
18
, pp.
637
646
.
11.
Be’ery-Lipperman
M.
,
Gefen
A.
,
2005
, “
Contribution of muscular weakness to osteoporosis: Computational and animal models
”,
Clinical Biomechanics
,
20
, pp.
984
997
.
12.
Wei
H. W.
,
Sunb
S. S.
,
Jao
S. H. Eric
,
Yeh
C. R.
,
Cheng
C. K.
,
2005
, “
The influence of mechanical properties of subchondral plate, femoral head and neck on dynamic stress distribution of the articular cartilage
”,
Medical Engineering & Physics
,
27
, pp.
295
304
.
13.
Doblare
M.
,
Cueto
E.
,
Calvo
B.
,
Martinez
M. A.
,
Garcia
J. M.
,
Cegonino
J.
,
2005
, “
On the employ of meshless methods in biomechanics
”,
Comput. Methods Appl. Mech. Engrg.
,
194
, pp.
801
821
.
14.
Stulpner
M. A.
,
Reddy
B. D.
,
Starke
G. R.
,
Spirakis
A.
,
1997
, “
A three-dimensional finite analysis of adaptive remodelling in the proximal femur
”,
Journal of Biomechanics
,
30
(
10)
, pp.
1063
1066
.
15.
Turner
A. W. L.
,
Gillies
R. M.
,
Sekel
R.
,
Morris
P.
,
Bruce
W.
,
Walsh
W. R.
,
2005
, “
Computational bone remodeling simulations and comparisons with DEXA results
”,
Journal of Orthopaedic Research
,
23
, pp.
705
712
.
16.
Waide
V.
,
Cristofolini
L.
,
Stolk
J.
,
Verdonschot
N.
,
Toni
A.
,
2003
, “
Experimental investigation of bone remodeling using composite femurs
”,
Clinical Biomechanics
,
18
, pp.
523
536
.
17.
Engh
C. A.
,
Hooten
J. P.
,
Schaffer
K. F. Zettl
,
Ghararpour
M.
,
McGovern
T. F.
,
Bobyn
J. D.
,
1995
, “
Evaluation of bone ingrowth in proximally and extensively porous-coated anatomic medullary locking prostheses retrieved at autopsy
”,
Journal of Bone and Joint Surgery.
American Volume
77
, pp.
903
910
.
18.
Glassman
A. H.
,
Crowninshield
R. D.
,
Schenck
R.
,
Herberts
P.
,
2001
, “
A low stiffness composite biologically fixed prosthesis
”,
Clinical Orthopaedics
,
393
, pp.
128
136
.
19.
Beaupre
G. S.
,
Orr
T. E.
,
Carter
D. R.
,
1990
, “
An approach for time-dependent bone modeling and remodeling-application: A preliminary remodeling simulation
”,
Journal of Orthopaedic Research
,
8
, pp.
662
670
.
20.
Field
D.
,
1988
, “
Laplacian smoothing and Delaunay triangulations
”,
Comm. In Applied Numerical Methods
,
4
, pp.
709
712
.
21.
Fischer
K. J.
,
Jacobs
C. R.
,
Leveston
M. E.
,
Carter
D. R.
,
1997
, “
Observations of convergence and uniqueness of Node-Based bone remodeling simulations
”,
Annals of Biomedical Engineering
,
25
, pp.
261
268
.
22.
Brand
R. A.
,
Pedersen
D. R.
,
Friederich
J. A.
,
1986
, “
The sensitivity of muscle force predictions to change in physiologic cross-sectional area
”,
Journal of Biomechanics
,
19
(
8)
, pp.
589
596
.
This content is only available via PDF.
You do not currently have access to this content.