Factors affecting the efficiency of liquid-vapor phase-change actuators during dynamic operation are explored. To do this, a model actuator was specifically designed so that actuator geometry, material properties and operation could be easily varied in order to parametrically study their effects on actuator efficiency. A numerical model was developed so that the detailed energy budget within the device could be elucidated. It was found that device efficiency was maximized when the energy input into the actuator was equal to the energy required to dry out the evaporator. Membrane thermal mass and compliance, as well as the thickness of the evaporating liquid layer were also found to have a large impact on efficiency. In contrast, membrane thermal conductivity was found to have a minimal effect on efficiency for dynamic operation. Based on the parameter study, a liquid-vapor phase-change membrane actuator fabricated with a 10.3μm thick wicking structure and a 200nm thick 3mm-square silicon nitride actuation membrane was shown to demonstrate improved performance characteristics. The actuator generated peak pressures and deflections of 123kPa and 167μm when actuated with a 14.3mJ heating pulse for a thermal efficiency of 0.15%.

1.
Jeong
O.
,
Yang
S.
, “
Fabrication and Test of a Thermopneumatic Micropump with a Corrugated p+ Diaphragm
,”
Sensors and Actuators A
, Vol.
83
, pp.
249
255
,
2000
.
2.
Yang
X.
,
Grosjean
C.
,
Tai
Y.
, “
Design, Fabrication, and Testing of Micromachined Silicone Rubber Membrane Valves
,”
Journal of Microelectromechanical Systems
, Vol.
8
, no.
4
,
393
402
, Dec.,
1999
.
3.
Roch
I.
,
Bidaud
P.
,
Collard
D.
,
Buchaillot
L.
, “
Fabrication and Characterization of an SU-8 Gripper Actuated by a Shape Memory Alloy Thin Film
,”
Journal of Micromechanics and Microengineering
, Vol.
13
, pp.
330
336
,
2003
.
4.
Garcia
E.
,
Sniegowski
J.
, “
Surface Micromachined Microengine
,”
Sensors and Actuators A
, Vol.
48
, pp.
203
214
,
1995
.
5.
Ataka
M.
,
Omodaka
A.
,
Takeshima
N.
,
Fujita
H.
, “
Fabrication and Operation of Polymide Bimorph Actuators for a Ciliary Motion System
,”
Journal of Microelectromechanical Systems
, Vol.
2
, no.
4
, pp.
146
150
, Dec,
1993
.
6.
Lagorce
L.
,
Brand
O.
,
Allen
M.
, “
Magnetic Microactuators Based on Polymer Magnets
,”
Journal of Microelectromechanical Systems
, Vol.
8
, no.
1
, pp.
2
9
, March,
2003
.
7.
P. Basset, A. Kaiser, P. Bigotte, D. Collard, L. Buchaillot, “A Large Stepwise Motion Electrostatic Actuator for a Wireless Microrobot,” Proceedings of IEEE Micro Electro Mechanical Systems, Las Vegas, NV, pp. 606–609, Jan., 2002.
8.
Friend
J.
,
Umeshima
A.
,
Ishii
T.
,
Nakamura
K.
,
Ueha
S.
, “
A Piezoelectric linear Actuator Formed From a Multitude of Bimorphs
,”
Sensors and Actuators A
, Vol.
109
, pp.
242
251
,
2004
.
9.
Schabmueller
C. J. G.
,
Niblock
T.
. “
Time Constant and Lateral Resonances of Thermal Vertical Bimorph Actuators
,”
Journal of Micromechanics and Microengineering
, Vol.
12
, pp.
410
413
,
2002
.
10.
Wego
A.
,
Glock
H.
,
Pagel
L.
,
Richter
S.
, “
Investigations on Thermo-Pneumatic Volume Actuators Based on PCB Technology
,”
Sensors and Actuators A
, Vol.
93
, pp.
95
102
,
2001
.
11.
Abadie
J.
,
Chaillet
N.
,
Lexcellent
C.
, “
An Integrated Shape Memory Alloy Micro-Actuator Controlled by Thermoelectric Effect
,”
Sensors and Actuators A
, Vol.
99
, pp.
297
303
,
2002
.
12.
Carlen
E.
,
Mastrangelo
C.
, “
Electrothermally Activated Paraffin Microactuators
,”
Journal of Microelectromechanical Systems
, Vol.
11
, no.
3
, pp.
165
174
, June,
2002
.
13.
Lin
L.
,
Pisano
A.
, “
Thermal Bubble Powered Microactuators
,”
Microsystem Technologies
, Vol.
1
, pp.
51
58
,
1994
.
14.
Shoji
S.
, “
Fluids for Sensor Systems
,”
Topics in Current Chemistry
, Vol.
194
, Springer-Verlag, Berlin, Germany, pp.
163
188
,
1998
.
15.
A. Henning, J. Fitch, D. Hopkins, L. Lilly, R. Faeth, E. Falsken, M. Zdeblick, “A Thermopneumatically Actuated Microvalve for Liquid Expansion and Proportional Control,” Proceedings of Transducers ’97 1997 International Conference on Solid-State Sensors and Actuators, Chicago, IL, pp. 825–828, June, 1997.
16.
Sim
W.
,
Yoon
H.
,
Jeong
O.
,
Yang
S.
, “
A Phase-Change Type Micropump with Aluminum Flap Valves
,”
Journal of Micromechanics and Microengineering
Vol.
13
, pp.
286
294
,
2003
.
17.
A. Yamamoto, T. Nino, T. Higuchi, “High Precision Electrostatic Actuator With Novel Electrode Design,” Proceedings of IEEE Micro Electro Mechanical Systems, Hiedelberg, Ger., pp. 408–413, Jan., 1998.
18.
M. Tabir-Azar, “Direct Optical Control for a Silicon Microactuator,” Technical Digest of the International Conference on Solid-State Sensors and Actuators, Montreaux, Switzerland, pp. 229–235, June, 1989.
19.
Bergstrom
P.
,
Ji
J.
,
Liu
Y.
,
Kaviany
M.
,
Wise
K.
, “
Thermally Driven Phase-Change Microactuation
,”
Journal of Microelectromechanical Systems
, Vol.
4
, no.
2
, pp.
10
17
, March, 1995.
20.
Rich
C.
,
Wise
K.
, “
A High-Flow Thermopneumatic Microvalve With Improved Efficiency and Integrated State Sensing
,”
Journal of Microelectromechanical Systems
, Vol.
12
, no.
2
, pp.
201
208
, April, 2003.
21.
S. Whalen, Cycle Work from a MEMS Heat Engine and Characterization of the Liquid-Vapor Phase Change Actuation Mechanism, Ph.D. Dissertation, Washington State University, 2004.
22.
V. Carey, Liquid-Vapor Phase-Change Phenomena, Hemisphere, 1992.
23.
Vlassak
J.
,
Nix
W.
, “
A New Bulge Test Technique for the Determination of Young’s Modulus Ratio of Thin Film
,”
Journal of Materials Research
, Vol.
7
, no.
12
, pp.
3242
3249
,
1992
.
24.
Stephan
P.
,
Busse
C.
, “
Analysis of Heat Transfer Coefficient of Grooved Heat Pipe Evporated Walls
,”
International Journal of Heat and Mass Transfer
, Vol.
34
, no.
2
, pp.
383
391
,
1992
.
25.
Potash
M.
,
Wayner
P.
, “
Evaporation from a Two-Dimensional Extended Meniscus
,”
International Journal of Heat and Mass Transfer
, Vol.
15
, pp.
1851
1863
,
1972
.
26.
Hall
J.
,
Apperson
N.
,
Crozier
B.
,
Richards
R.
,
Bahr
D.
,
Richards
C.
, “
A Facility for Characterizing the Dynamic Mechanical Behavior of Thin Membranes for Microelectromechanical Systems
,”
Review of Scientific Instruments
, Vol.
73
, no.
5
, pp.
2067
2072
, May,
2002
27.
M. Zdeblick, R. Anderson, J. Jankowski, B. Kline-Schoder, L. Cristel, R. Miles, W. Weber, “Thermopneumatically Actuated Microvalves and Integrated Electro-Fluidic Circuits,” Technical Digest of the Solid-State Sensor and Actuator Workshop, Hilton Head, SC, pp. 251–255, June, 1994.
This content is only available via PDF.
You do not currently have access to this content.