A microfluidic device for continuous, real time blood plasma separation is introduced. This device is composed of a blood inlet, a purified plasma outlet, and a concentrated blood cell outlet. It is designed to separate blood plasma from an initial blood sample of up to 45 % hematocrit (Hct). The microfluidic device is designed and analyzed using an analogous electrical circuit, analytical and numerical studies. The numerical study results show that 27 % and 25 % of plasma volume can be separated from a total inlet blood volume of 45 % and 39 % hematocrit, respectively. The functionality of this device was demonstrated using defibrinated sheep blood (Hct=36 %). During 2 hrs. of continuous blood infusion through the device, all the blood cells traveled through the device toward the concentrated blood outlet while only the plasma flowed towards the plasma outlet without any clogging or lysis of cells. The experimentally measured plasma skimming volume was about 33 % for a 36 % inlet hematocrit. Due to the device’s simple structure and control mechanism, this microdevice is expected to be used for highly efficient continuous, real time cell-free blood plasma separation device.

1.
Asimakopoulos
G.
(
1999
). “
Mechanisms of the systemic inflammatory response
.”
Perfusion
.
14
:
269
77
.
2.
Birdi
I.
,
Caputo
M.
,
Underwood
M.
,
Bryan
A.
and
Angelini
G.
(
1999
). “
The effects of cardiopulmonary bypass temperature on inflammatory response following cardiopulmonary bypass
.”
Eur. J. Cardiothorac. Surg.
16
:
540
45
.
3.
Fosse
E.
,
Mollnes
T.
and
Ingvalden
B.
(
1987
). “
Complement activation during major operations with or without cardiopulmonary bypass
.”
J. Thorac. Cardiovasc. Surg.
93
:
860
66
.
4.
J. Kirklin and B. Barratt-Boyes (1993). Cardiac Surgery. New York.
5.
Kirklin
J.
,
Chenoweth
D.
and
Naftel
D.
(
1986
). “
Effects of protamine administration after CPB on complement, blood elements, and the hemodynamic state
.”
Ann. Thorac. Surg.
41
:
193
99
.
6.
Kirklin
J.
,
Westaby
S.
,
Blacstone
E.
,
Kirklin, DE
J. C.
and
Pacifico
A.
(
1983
). “
Complement and the damaging effects of cardiopulmonary bypass
.”
J. Thorac. Cardiovasc. Surg.
86
:
845
57
.
7.
Moore
F.
,
Warner
K.
and
Assousa
S.
(
1988
). “
The effects of complement activation during cardiopulmonary bypass: attenuation by hypothermia, heparin, and hemodilution
.”
Ann. Surg.
208
:
95
103
.
8.
Schlag
G.
,
Redl
H.
and
Hallstrom
S.
(
1991
). “
The cell in shock: The origin of multiple organ failure
.”
Resuscitation
21
:
137
137
.
9.
Steinberg
J. B.
,
Kapelanski
D. P.
and
Olson
J. D.
(
1993
). “
Cytokine and complement levels in patients undergoing cardiopulmonary bypass
.”
J. Thorac. Cardiovasc. Surg.
106
:
1008
16
.
10.
Westaby
S.
(
1987
). “
Organ dysfunction after cardiopulmonary bypass: a systemic inflammatory reaction initiated by the extracorporeal circuit
.”
Intensive Care Med.
13
:
89
95
.
11.
Utley
J. R.
(
1990
). “
Pathophysiology of cardiopulmonary bypass: current issues
.”
J. Card. Surg.
5
:
177
89
.
12.
Astumian
R. D.
(
1997
). “
Thermodynamics and kinetics of a Brownian Motor
.”
Science
276
:
917
22
.
13.
Gascoyne
P.
,
Mahidol
C.
,
Ruchirawat
M.
,
Satayavivad
J.
,
Watcharasit
P.
and
Becker
F. F.
(
2002
). “
Microsample preparation by dielectrophoresis: isolation of malaria
.”
Lab Chip
2
(
2
):
70
75
.
14.
Huang
L.
,
Cox
E.
,
Austin
R.
and
Sturm
J.
(
2004
). “
Continuous particle separation through deterministic lateral displacement
.”
Science
304
(
5673
):
987
00
.
15.
Voldman
J.
,
Gray
M. L.
,
Toner
M.
and
Schmidit
M. A.
(
2002
). “
A microfabrication-based dynamic array cytometer
.”
Anal. Chem.
74
(
16
):
3984
90
.
16.
Yang
J.
,
Huang
Y.
,
Wang
X. B.
,
Beker
F. F.
and
Gascoyne
P. R. C.
(
2000
). “
Differntial analysis of human leukocytes by dielectrophoretic field-flow-fractionation
.”
Biophysical Journal
78
(
5
):
2680
89
.
17.
Be´langer
M.-C.
,
Marois
Y.
,
Raynald
R.
,
Yahye
M.
,
Eric
W.
,
Ze
Z.
,
King
Martin W.
,
Mingjing
Y.
,
Charles
H.
and
Robert
G.
(
2000
). “
Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: Blood compatibility and biocompatibility studies
.”
Artificial Organs
24
(
11
):
879
88
.
18.
Gorbet
M. B.
,
Yeo
E. L.
and
Sefton
M. V.
(
1999
). “
Flow cytometric study of in vitro neutrophil activation by biomaterials
.”
Journal of Biomedical Materials Research
44
(
3
):
289
97
.
19.
Fung
Y. C.
(
1973
). “
Stochastic Flow in Capillary Blood Vessels
.”
Microvasc. Res.
5
:
34
48
.
20.
Yen
R. T.
and
Fung
Y. C.
(
1978
). “
Effects of Velocity Distribution on Red Cell Distribution in Capillary Blood Vessel
.”
Am. J. Physiol.
235
(
2
):
H251–H57
H251–H57
.
21.
S. Yang and J. D. Zahn (2004). Particle Separation in Microfluidic Channels using Flow Rate Control. Proceedings of ASME Conference, International Mechanical Engineering Conference Exp Fluids Engineering: IMECE 2004-60862.
22.
Duffy
D.
,
McDonald
J.
,
Schueller
O.
and
Whitesides
G.
(
1998
). “
Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane)
.”
Anal. Chem.
70
(
23
):
4974
84
.
23.
Xia
Y.
and
Whitesides
G. M.
(
1998
). “
Soft Lithography
.”
Annu. Rev. Mater. Sci.
28
:
153
84
.
24.
L. Rosenhead (1963). Laminar Boundary Layer. New York, Dover Publications, inc.
25.
Walburn
F. J.
and
Schneck
D. J.
(
1976
). “
A constitutive equation for whole human blood
.”
Biorheology
13
(
3
):
201
10
.
26.
Y. C. Fung (1993). Biomechanics: Mechanical Properties of Living Tissues, Springer.
27.
Barbee
J. H.
and
Cokelet
G. R.
(
1971
). “
The Fahraeus effect
.”
Microvasc. Res.
3
:
6
16
.
This content is only available via PDF.
You do not currently have access to this content.