A nonlinear dynamic model is developed to analyze the bouncing vibration of a partial contact air bearing slider, which is designed for the areal recording density in hard disk drives of 1 Tbit/in2 or even higher. In this model the air bearing with contact is modeled using the generalized Reynolds equation modified with the Fukui-Kaneko slip correction and a new second order slip correction for the contact situation [1]. The adhesion, contact and friction between the slider and the disk are also considered in the model. It is found that the disk surface roughness, which moves into the head disk interface (HDI) as the disk rotates, excites the bouncing vibrations of the partial contact slider. The frequency spectra of the slider’s bouncing vibration have high frequency components that correspond to the slider-disk contact.

This content is only available via PDF.
You do not currently have access to this content.