This paper presents the design, fabrication, and characterization of three different configurations of multiple microchannel heat sink devices to improve their overall cooling efficiency for potential applications in electronic cooling. A fabrication and packaging process based on standard UV-lithography, wet etching, and bonding was developed to allow a rapid parametric study. An anisotropic chemical etch with potassium hydroxide, water, and isopropanol is used to fabricate microchannels on (110)-oriented silicon wafers. PDMS (Polydimethylsiloxane) was tested as the cover of microchannels due to its mechanical flexibility. It is transparent so that the microchannel flow can be visualized using a microscope. An open flow loop, which consists of syringe pump and a power supply, was designed to test the heat sinks with different configurations. Temperature data were collected at different locations by a Data Acquisition (DAQ) system and recorded by Labview software to investigate the heat transfer characteristics of the heat sink. Three heat sinks, with different configurations, were tested. They all included microchannels of width 50 μm, depth 60 μm, and fin width 200 μm. Some Typical results on heat transfer are presented, along with discussion on the efficiency for heat removal.
Skip Nav Destination
2010 14th International Heat Transfer Conference
August 8–13, 2010
Washington, DC, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4938-5
PROCEEDINGS PAPER
An Experimental Study on the Effect of Configuration of Multiple Microchannels on Heat Removal for Electronic Cooling
Jingru Zhang,
Jingru Zhang
Rutgers University, Piscataway, NJ
Search for other works by this author on:
Shaurya Prakash,
Shaurya Prakash
Ohio State University, Columbus, OH
Search for other works by this author on:
Yogesh Jaluria,
Yogesh Jaluria
Rutgers University, Piscataway, NJ
Search for other works by this author on:
Lei Lin
Lei Lin
Rutgers University, Piscataway, NJ
Search for other works by this author on:
Jingru Zhang
Rutgers University, Piscataway, NJ
Shaurya Prakash
Ohio State University, Columbus, OH
Yogesh Jaluria
Rutgers University, Piscataway, NJ
Lei Lin
Rutgers University, Piscataway, NJ
Paper No:
IHTC14-22234, pp. 473-480; 8 pages
Published Online:
March 1, 2011
Citation
Zhang, J, Prakash, S, Jaluria, Y, & Lin, L. "An Experimental Study on the Effect of Configuration of Multiple Microchannels on Heat Removal for Electronic Cooling." Proceedings of the 2010 14th International Heat Transfer Conference. 2010 14th International Heat Transfer Conference, Volume 3. Washington, DC, USA. August 8–13, 2010. pp. 473-480. ASME. https://doi.org/10.1115/IHTC14-22234
Download citation file:
6
Views
0
Citations
Related Articles
Fabrication and Experimental Characterization of Nanochannels
J. Heat Transfer (May,2012)
High-Flux Thermal Management With Supercritical Fluids
J. Heat Transfer (December,2016)
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
J. Heat Transfer (November,1998)
Related Chapters
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment
Managing Energy Resources from within the Corporate Information Technology System
Industrial Energy Systems
Thermal Interface Resistance
Thermal Management of Microelectronic Equipment, Second Edition