Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-2 of 2
Keywords: latent variable Gaussian process
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. IDETC-CIE2022, Volume 3A: 48th Design Automation Conference (DAC), V03AT03A049, August 14–17, 2022
Paper No: DETC2022-90177
... not been sampled yet. We show that domain knowledge about physical descriptors can be intuitively embedded into the latent variable Gaussian process approach — a mixed-variable GP modeling technique — and used to selectively explore levels of qualitative variables in the Bayesian optimization framework...
Proceedings Papers
Akshay Iyer, Yichi Zhang, Aditya Prasad, Siyu Tao, Yixing Wang, Linda Schadler, L. Catherine Brinson, Wei Chen
Proc. ASME. IDETC-CIE2019, Volume 2A: 45th Design Automation Conference, V02AT03A066, August 18–21, 2019
Paper No: DETC2019-98222
... Optimization for multiple objectives to identify the Pareto Frontier within tens of iterations. These findings project Bayesian Optimization as a powerful tool for design of engineered material systems. data-centric material design latent variable Gaussian process mixed-variable Bayesian optimization...