This paper presents proposed designs of parallel hybrid transmissions with only one electric motor/generator (MG) and without any rotating clutches. The proposed motor/generator integrated hybrid transmission serves to regulate the engine’s effective gear ratio (engine rotational velocity versus vehicle velocity) by mixing the engine and electric motor powers through a power controlling device. The proposed design provides some of the benefits and flexibility of a power-split design but using conventional available components in a simpler mechanical layout that makes the design compact, mechanically simple, and operationally flexible. Three commonly used transmission gear sets are used for this purpose; Simpson, Ravigneaux, and Type-6206 gear sets. With an electronic control unit, eight major modes of operation including a regenerative braking capability are shown to be feasible in the proposed hybrid transmission; one electric motor mode, two engine modes, two engine/charge modes, and two power modes. Continuously variable transmission (CVT) capability is provided with the second engine/charge mode and with the second power mode. The second power mode can be further subdivided into three hybrid sub-modes that correspond to the direct drive, under-drive, and over-drive of a conventional automatic transmission. The feasibility of the proposed hybrid transmission is demonstrated with a numerical example employing conventional Ravigneaux gear train. The kinematics, static torque, and power flow relations for all operation modes are analyzed in detail.

This content is only available via PDF.
You do not currently have access to this content.