Abstract

Challenges in the development of resource-efficient lightweight designs, such as emission and cost targets in production, lead to an increasing demand for environmentally friendly and fast joining processes. Therefore, cold-forming mechanical joining techniques provide an energy-efficient alternative in comparison to established processes, such as spot welding. However, to ensure a sufficient reliability of the product design, not only the selection of an appropriate manufacturing and joining method, but also the suitable dimensioning and validation of the entire joining process is a crucial step. In this context, thermal processes offer a large number of design principles while mechanical joining methods mainly require extensive experimental tests and the inclusion of expert knowledge. Although few contributions already investigated the data-based analysis of mechanical joints, a system for the requirement- and manufacturing-oriented dimensioning of joining components, such as different profiles and blanks, in combination with the estimation of joint properties is not available yet. Motivated by this lack, this contribution introduces an engineering workbench for the support of design engineers in the early development phases of the knowledge and data-based design of mechanical joining connections using clinching as an example. In this regard, the approach is demonstrated involving a similar material and sheet thickness combination with static loads.

This content is only available via PDF.
You do not currently have access to this content.