This paper presents a framework to describe and explain human-machine collaborative design focusing on Design Space Exploration (DSE), which is a popular method used in the early design of complex systems with roots in the well-known design as exploration paradigm. The human designer and a cognitive design assistant are both modeled as intelligent agents, with an internal state (e.g., motivation, cognitive workload), a knowledge state (separated in domain, design process, and problem specific knowledge), an estimated state of the world (i.e., status of the design task) and of the other agent, a hierarchy of goals (short-term and long-term, design and learning goals) and a set of long-term attributes (e.g., Kirton’s Adaption-Innovation inventory style, risk aversion). The framework emphasizes the relation between design goals and learning goals in DSE, as previously highlighted in the literature (e.g., Concept-Knowledge theory, LinD model) and builds upon the theory of common ground from human-computer interaction (e.g., shared goals, plans, attention) as a building block to develop successful assistants and interactions. Recent studies in human-AI collaborative DSE are reviewed from the lens of the proposed framework, and some new research questions are identified. This framework can help advance the theory of human-AI collaborative design by helping design researchers build promising hypotheses, and design studies to test these hypotheses that consider most relevant factors.

This content is only available via PDF.
You do not currently have access to this content.