The current paper provides some on-field measurements regarding the quantification of the dissipated power during the damping process of a traditional viscous shock absorber. In this regard, the HAVAL H8 SUV was driven for several trips on the Nanhu campus arena considering a velocity range of 20–50 km/h. Furthermore, two species of campus road sections were selected during the fabricated tests; straight road section with and without a speed bump. The acceleration signals of the rear-right suspension system (body and wheel) were acquired as the average power dissipation trend could be calculated from the relative suspension velocity. The findings of this investigation indicate that the average dissipated power of a traditional shock absorber can be in a range of 10–90 W for a speed range of 20–50 km/h driving on a campus road section free of speed bumps. Whilst, for another road segment with one speed bump, the shock absorber dissipated a kinetic energy between 40–140 W for a velocity range of 20–50 km/h. Suggesting that an average overall dissipated power of 160–560 W is available by means of the traditional shock absorbers. The results are of strategic interest for the researchers and vehicle manufacturers for further considerations in terms of regenerative suspension systems where a part of this energy could be harvested instead of being wholly dissipated.

This content is only available via PDF.
You do not currently have access to this content.