Analogical design has been a long-standing approach to solve engineering design problems. However, it is still unclear as to how analogues should be presented to engineering design in order to maximize the utility of these. The utility is minimal when analogues are complex and belong to other domain (e.g., biology). Prior work includes the use of a function model called SAPPhIRE to represent over 800 biological and engineered systems. SAPPhIRE stands for the entities: States, Actions, Parts, Phenomena, Inputs, oRgans, and Effects that together represent the functionality of a system at various levels of abstraction. In this paper, we combine instances of SAPPhIRE model for representing complex systems (also from the biological domain). We use an electric buzzer to illustrate and compare the efficacy of this model in explaining complex systems with that of a well-known model from literature. The use of multiple-instance SAPPhIRE model instances seems to provide a more comprehensive explanation of a complex system, which includes elements of description that are not present in other models, providing an indication as to which elements might have been missing from a given description. The proposed model is implemented in a web-based tool called Idea-Inspire 4.0, a brief introduction of which is also provided.

This content is only available via PDF.
You do not currently have access to this content.