It has become evident through studies both computational and otherwise, that the characteristics of blood flow through a mechanical heart valve is closely tied to its thrombogenic profile and clinical performance. Despite progress in the field, there remains an unmet clinical need for a heart valve that is both durable and free from the need for anticoagulation therapy. We designed a prototype for a novel mechanical heart valve with the aim of improving hemodynamic performance and obviating the need for anticoagulant therapy. In this paper we present the results of a computational study that compared our prototype mechanical heart valve with a popular commercially available valve, the Medtronic ATS valve. Our results show that the unique design features of our prototype leads to a reduction turbulent flow, along with a reduction in velocity jets by up to 28%, pressure gradient across the valve by 36.7%, and increases in the effective orifice area of the valve by 25.7%.

This content is only available via PDF.
You do not currently have access to this content.