Heat shields play a vital role in protecting space vehicles during the atmosphere reentry. Therefore, they are essential for space vehicles, and better designed heat shields will vastly improve the ability both of robots and humans to explore extraterrestrial destinations. The main goal of the current paper is to investigate the feasibility of designing, building and deploying a tensegrity-based heat shield, which would withstand the atmospheric reentry of a low gravity and dense atmosphere celestial body (such as Titan), where the reentry accelerations and therefore, drag forces, will be lower than in the case of a high gravity planet (e.g., Earth or Mars). The paper is a preliminary study, which investigates the parameters that would be helpful in designing tensegrity-based heat shields. We explore the dynamics of entry and how the atmospheric forces interact with the heat shield. Tensegrity structures consist of tension elements used in conjunction with rigid rods which are actuated by changing the lengths of the tension elements. The advantage of the proposed approach versus the traditional one (rigid heat shields) is that tensegrity structures are flexible structures able to adapt the shape to obtain an optimal reentry configuration. The proposed heat shield will be able to fold in a small space during transport (e.g., to the target celestial body), unfold when the target is reached and provide additional mobility for an optimal reentry pattern. However, to achieve a deployable configuration, the tensegrity structure must withstand significant dynamics and thermal loads. We will use NASA Tensegrity Robotics Toolkit (NTRT) to simulate the structural designs of the heat shield as well as for designing the controllers.

This content is only available via PDF.
You do not currently have access to this content.