In this paper, a class of large deployable mechanisms constructed by plane-symmetric Bricard linkage is presented. The plane-symmetric Bricard linkage is a closed-loop over-constrained spatial mechanism composed of six hinge-jointed bars, which has one plane of symmetry during its deployment process. The kinematic analysis of the linkage is presented from the perspectives of geometric conditions, closure equations and degree of freedom. The results illustrates that the linkage has one degree of freedom, and it can be deployed from the folded configuration to one rectangle plane. Therefore, the plane-symmetric Bricard linkage can be used to construct lager deployable mechanism as basic deployable unit. Four plane-symmetric Bricard linkages can be assembled to a quadrangular module by sharing the vertical bars of adjacent units. The module is a multi-loop deployable mechanism and has one degree of freedom by the mobility analysis. Large deployable mast, deployable plane truss and deployable ring are built by a plurality of plane-symmetric Bricard linkages. The computer-aided design models for typical examples are built to illustrate their feasibility and validate the analysis and design methods.

This content is only available via PDF.
You do not currently have access to this content.