The purpose of this study is to investigate the various fluid flow regimes generated by a pinion running partly immersed in an oil bath and the corresponding churning power losses. In a series of papers, the authors have established several loss formulae whose validity depends on two different flow regimes characterized via a critical Reynolds number. Based on some new measurements for transient operating conditions, it has been found that the separation in two regimes may be not accurate enough for wide-faced gears and high temperatures. An extended formulation is therefore proposed which, apart from viscous forces, introduces the influence of centrifugal effects. The corresponding results agree well with the experimental measurements from a number of gears and operating conditions (speed, temperature). Finally, the link between churning and windage losses is examined and it is concluded that the physical mechanisms are different thus making it difficult to establish a general correlation between the two phenomena. In particular, it is shown that tooth geometry is of secondary importance on churning whereas, the air-lubricant circulation being different for spur and helical gears, it substantially impacts windage.

This content is only available via PDF.
You do not currently have access to this content.