A rotating shaft supported by a repulsive magnetic bearing may contact with a backup bearing during the passage of the critical speed as the damping coefficient of the repulsive magnetic bearing is small. This paper investigates the contact vibration during passage of the critical speed. Particularly, the influence of the axial displacement of the repulsive magnetic bearing on the escape speed from the contact vibration is focused. As a result, it is clarified that the rotational speed of the escapement from the contact vibration decreases as the axial displacement increases. It is explained by the change of both the linear stiffness and nonlinear coefficient in the increase of the axial displacement.

This content is only available via PDF.
You do not currently have access to this content.