Tensegrity mechanisms are interesting candidates for high-acceleration robotic applications since their use of cables allows for a reduction in the weight and inertia of their mobile parts. In this work, a planar two-degree-of-freedom translational tensegrity mechanism that could be used for pick and place applications is introduced. The mechanism uses a strategic actuation scheme to generate the translational motion as well as to ensure that the cables remain taut at all times. Analytical solutions to the direct and inverse kinematic problems are developed and the mechanism’s workspace boundaries are computed in both the actuator and Cartesian spaces. The influence of the mechanism’s geometry on the size and shape of the Cartesian workspace are then studied. Based on workspace size only, it is found that the optimal mechanism geometry corresponds to a relatively large ratio between the length of the struts and the width of the base and end-effector.

This content is only available via PDF.
You do not currently have access to this content.