This paper examines the usefulness of a combined differential braking and active front steering system on the stability enhancement of a vehicle. The two manipulated inputs for steering intervention are the added front steer angle and the brake torque, where the later is applied at only one wheel at a time. In this study active front steering controller is designed independent of differential braking controller. Since the yaw and lateral motions are highly nonlinear, two fuzzy logic controllers are constructed to compensate the effects of road condition and parameter variation. Computer simulations using nonlinear seven degree of freedom vehicle model show the strong capability of the combined approach and its relative merit compared to the case that one subsystem is actuated.

This content is only available via PDF.
You do not currently have access to this content.