A robust topology exploration method is under development in which robust design techniques are extended to the early stages of a design process when a product’s layout or topology is determined. The performance of many designs is strongly influenced by both topology, or the geometric arrangement and connectivity of a design, and potential variations in factors such as the operating environment, the manufacturing process, and specifications of the design itself. While topology design and robust design are active research areas, little attention has been devoted to integrating the two categories of design methods. In this paper, we move toward a comprehensive robust topology exploration method by coupling robust design methods, namely, design capability indices with topology design techniques. The resulting design method facilitates efficient, effective realization of robust designs with complex topologies. The method is employed to design extruded cellular materials with robust, desirable elastic properties. For this class of materials, 2D cellular topologies are customizable and largely govern multifunctional performance. By employing robust, topological design methods, we obtain cellular material designs that are characterized by ranged sets of design specifications with topologies that reliably meet a set of design requirements and are relatively simple and robust to anticipated variability.

This content is only available via PDF.
You do not currently have access to this content.