Abstract

This paper presents an analysis of flow and heat transfer over a rotating axsisymmetric body of revolution in a mixed convective heat transfer along with surface conditions of heating or cooling as well as surface transpriation. Boundary-layer approximation reduces the elliptic Navier-Stokes equations to parabolic equations, where the Keller-Cebeci method of finite-difference solution is used to solve the resulting system of partial-differential equations. Comparison of the calculated values of the velocity and temperature profiles as well as the shear and the heat transfer coefficients at the surface for the case of a sphere with the available literature data indicate the model well predicts the boundary-layer flow and heat transfer over a rotating axsisymmetric body.

This content is only available via PDF.
You do not currently have access to this content.