Abstract

This paper demonstrates procedures implemented for the synthesis of a four-bar mechanism that produces large angular oscillations of the output member while maintaining effective transmission angles. The mechanisms are modeled as being driven by a force applied at the coupler link. Additionally this force’s line of action is constrained to occur along an approximate straight line. This research was conducted out of the need for a device that is capable of retraction of the horizontal tool bar housed on the back of a tractor. The tool bars accommodate the implements required to accomplish the numerous tasks of the farmer, i.e. row markers, sprayer arms, planters, etc. Upon retraction of the tool bar so that it is parallel to ground, the appropriate tools are lowered to their working position. As the length of these bars increases, a savings of time and increased productivity is realized. Kurt Hain makes the following observation regarding large oscillation mechanisms in [1]: “It would be very difficult to solve this problem with one four-bar linkage, because it is difficult to design a four-bar linkage having such a large oscillation of a crank without running into problems of poor transmission angle characteristics; it might be possible to use linkages in combinations with gears, but this would make the mechanism more expensive, less efficient, and probably noisier.” In this study simulated annealing, a genetic algorithm and the generalized reduced gradient method are used to produce mechanisms with large angular oscillations of the output member and transmission angles that vary by as little as 20° from 90°. A comparative analysis of each of the optimization procedures is presented with observations regarding the efficacy of each method in the solution of the large oscillation mechanism.

This content is only available via PDF.
You do not currently have access to this content.