Abstract

Knowledge of the behavior of a wave incident at a joint is necessary to properly analyze the vibration of a structure. We need to know how much energy is reflected and transmitted and also the type of wave carrying the energy. Typically, Euler beam theory is used to derive the reflection and transmission coefficients at high frequencies. Errors can become unacceptably large in the frequency range currently being analyzed using Statistical Energy Analysis (SEA) and the Power Flow Finite Element Method (PFFEM). We derive reflection and transmission coefficients due to a bending wave incident on a rigid joint between two infinitely long beams using Timoshenko theory and compare results to those obtained using Euler theory. We also compute the reflection and transmission efficiencies that determine the amount of power carried by each wave.

This content is only available via PDF.
You do not currently have access to this content.