Abstract

The safety analyses were carried out to confirm the sufficiency of the function of the plant protection system against the pump/diagrid link rupture. The target plant is a pool-type SFR of about 600 MWe class equipped with an axially homogeneous core currently under development in Japan. In the pool-type SFR, the primary system piping connects primary pump and the high-pressure sodium plenum located at the inlet of fuel sub-assemblies and called “pump/diagrid link”. Because this piping is submerged in the reactor vessel, it is difficult to detect small scale sodium leakage in this piping, and thus a certain large pipe break like guillotine should be assumed and evaluated as a design basis event. In order to confirm the detectability of pump/diagrid link rupture by safety protection system signals, a series of analyses of the guillotine break for a pump/diagrid link were carried out. Sensitivity study had also been performed to consider the uncertainty of the reactivity coefficient in the analyses. The sufficiency of the function of the plant protection system against the pump/diagrid link rupture was confirmed by the analysis results that at least two signals are transmitted for the detection of the event, which is the development target of the plant protection system in pool-type SFR.

This content is only available via PDF.
You do not currently have access to this content.