Critical heat flux (CHF) is one of the important design criteria of water cooled nuclear reactors and plays a key role for the safety and economics of nuclear power plants (NPPs). One of the goals of nuclear reactor design is to receive maximum efficiency under full power and its efficiency would be improved when the core exit temperature increases. From this perspective, the design of a nuclear reactor needs to take into account the appropriate thermal margin to ensure that the fuel design limits are within acceptable limits for any normal operating conditions. However, in general, CHF limits the heat flux from the fuel rods and the power capacity of the nuclear reactor. CHF refers to the transition from nucleate boiling to film boiling and causes an abrupt rise of the fuel rod surface temperature. Therefore, prediction of CHF is vital to the design and safety analysis of water cooled nuclear reactors. During the last five decades, large efforts have been carried out on the CHF prediction by many researchers. Generally, CHF prediction can be achieved in three main ways: empirical correlations, look-up tables and phenomenological models. Due to the complex nature of CHF, there is no deterministic theory for the prediction of CHF. Even the look-up tables and the empirical correlations have their own application ranges and limitations. To overcome these limitations, some computational intelligence (CI) techniques have been developed for the prediction of CHF by many researchers in the last two decades. This paper provides a brief overview of CI techniques for prediction of CHF. In this paper, the reviewed CI techniques mainly include artificial neural networks (ANNs), genetic algorithms (GAs), support vector machines (SVMs), and their hybrid models. This review also compares the strengths and weaknesses of several CI techniques and provides basic technical support for future selection of appropriate methods by those involved in the field.
Skip Nav Destination
2018 26th International Conference on Nuclear Engineering
July 22–26, 2018
London, England
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-5149-4
PROCEEDINGS PAPER
A Brief Review of Computational Intelligence Techniques for Critical Heat Flux Prediction
B. T. Jiang,
B. T. Jiang
Xi'an Polytechnic University, Xi'an, China
Search for other works by this author on:
Y. N. Liu
Y. N. Liu
Xi'an Jiaotong University, Xi'an, China
Search for other works by this author on:
B. T. Jiang
Xi'an Polytechnic University, Xi'an, China
Y. N. Liu
Xi'an Jiaotong University, Xi'an, China
Paper No:
ICONE26-82325, V06BT08A050; 7 pages
Published Online:
October 24, 2018
Citation
Jiang, BT, & Liu, YN. "A Brief Review of Computational Intelligence Techniques for Critical Heat Flux Prediction." Proceedings of the 2018 26th International Conference on Nuclear Engineering. Volume 6B: Thermal-Hydraulics and Safety Analyses. London, England. July 22–26, 2018. V06BT08A050. ASME. https://doi.org/10.1115/ICONE26-82325
Download citation file:
28
Views
Related Proceedings Papers
Related Articles
Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes
J. Heat Transfer (July,2009)
COBRA-TF Simulation of DNB Response During Reactivity-Initiated Accidents Using the NSRR Pulse Irradiation Experiments
ASME J of Nuclear Rad Sci (July,2016)
Critical Heat Flux for Nearly Saturated Water Flowing Normal to a Cylinder
J. Heat Transfer (February,1964)
Related Chapters
Nuclear Fuel Cycle
Non-Proliferation Nuclear Forensics: Canadian Perspective
Forecasting for Reservoir's Water Flow Dispatching Based on RBF Neural Network Optimized by Genetic Algorithm
International Conference on Advanced Computer Theory and Engineering (ICACTE 2009)
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies