A generic strategy of core physics codes benchmarking was elaborated within the European NURESIM code platform development. In this paper, the application of this step-wise procedure to benchmarking the 3D neutron kinetics code DYN3D for applications to VVER-type reactors is described. Numerical and experimental benchmark problems were considered for code verification and validation. Examples of these benchmarks including benchmark set-up and results obtained by use of DYN3D in comparison with other codes are given. First, mathematical problems with given cross sections are used for the verification of the mathematical methods applied e.g. in nodal codes against finite difference solutions. Discretization errors were quantified. After minimisation of numerical errors, modelling errors have to be considered. Diffusion approximation and homogenisation errors are due to simplified physical approaches and can be estimated by comparing diffusion solutions with more accurate Monte Carlo or deterministic transport solutions. Methods to reduce these errors are outlined. A series of 2D whole core benchmarks for different core loadings and operational conditions for VVER-1000 reactors was defined for this purpose. Reference transport solutions were calculated by the MARIKO and APOLLO codes based on Method of Characteristics. Homogenised two-group and few-group diffusion parameters were derived from the reference solutions and used as cross section data for the nodal diffusion code DYN3D. The DYN3D solutions were compared to the reference solution. It was shown that the homogenisation error can be significantly reduced by using Assembly Discontinuity Factors (ADF) and Reflector Discontinuity Factors (RDF) which are obtained from the transport solution by applying equivalence theory. A study using the multi-group version of DYN3D has shown that increasing the number of groups in the considered cases has only a small effect in comparison with homogenisation error. After reducing modelling errors by choosing appropriate physical approximations, the code have to be validated against reality. Experimental problems are used for code validation. Experimental data for VVER reactors, which were used for the benchmarking of the DYN3D code within NURESIM, are power distribution measurements at the full-size (VVER-1000) experimental facility V-1000, which have been well documented within the EC project VALCO, and kinetic experiments at the LR-0 zero power reactor in NRI Rˇezˇ. The code DYN3D, being one of the NURESIM platform codes, has proved to be an effective tool for steady-state and kinetics core calculations. The high accuracy of the code is based on the advanced nodal method “HEXNEM2”, multi-group approach, applying discontinuity factors, and intra-nodal flux reconstruction.
Skip Nav Destination
17th International Conference on Nuclear Engineering
July 12–16, 2009
Brussels, Belgium
Conference Sponsors:
- Nuclear Engineering Division
ISBN:
978-0-7918-4355-0
PROCEEDINGS PAPER
Application of a Step-Wise Verification and Validation Procedure to the 3D Neutron Kinetics Code DYN3D Within the European NURESIM Project
U. Rohde,
U. Rohde
Forschungszentrum Dresden-Rossendorf, Dresden, Germany
Search for other works by this author on:
S. Mittag,
S. Mittag
Forschungszentrum Dresden-Rossendorf, Dresden, Germany
Search for other works by this author on:
U. Grundmann,
U. Grundmann
Ulrich Grundmann Physikalische Berechnungen, Dresden, Germany
Search for other works by this author on:
P. Petkov,
P. Petkov
Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria
Search for other works by this author on:
J. Ha´dek
J. Ha´dek
Institute of Nuclear Research, Rˇezˇ, Czech Republic
Search for other works by this author on:
U. Rohde
Forschungszentrum Dresden-Rossendorf, Dresden, Germany
S. Mittag
Forschungszentrum Dresden-Rossendorf, Dresden, Germany
U. Grundmann
Ulrich Grundmann Physikalische Berechnungen, Dresden, Germany
P. Petkov
Institute of Nuclear Research and Nuclear Energy, Sofia, Bulgaria
J. Ha´dek
Institute of Nuclear Research, Rˇezˇ, Czech Republic
Paper No:
ICONE17-75446, pp. 375-387; 13 pages
Published Online:
February 25, 2010
Citation
Rohde, U, Mittag, S, Grundmann, U, Petkov, P, & Ha´dek, J. "Application of a Step-Wise Verification and Validation Procedure to the 3D Neutron Kinetics Code DYN3D Within the European NURESIM Project." Proceedings of the 17th International Conference on Nuclear Engineering. Volume 5: Fuel Cycle and High and Low Level Waste Management and Decommissioning; Computational Fluid Dynamics (CFD), Neutronics Methods and Coupled Codes; Instrumentation and Control. Brussels, Belgium. July 12–16, 2009. pp. 375-387. ASME. https://doi.org/10.1115/ICONE17-75446
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
A Reduced Basis Approach for Modeling the Movement of Nuclear Reactor Control Rods
ASME J of Nuclear Rad Sci (April,2016)
Study on the Coupled Neutronic and Thermal-Hydraulic Characteristics of the New Concept Molten Salt Reactor
J. Eng. Gas Turbines Power (October,2010)
Using the Few-Group Approximation for Calculating Some Neutron-Physical Characteristics of VVER-1000 Core by Means of the Monte Carlo Universal Code
ASME J of Nuclear Rad Sci (April,2022)
Related Chapters
Visual Simulation Software Development of Exhaust-Gas Diffusion in a Kitchen Burning Liquefied-Gas
Proceedings of the International Conference on Technology Management and Innovation
Requirement Defect Identification and Their Mitigation through Severity and Priority
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
Reactor Shutdown and Reactor Restart
Fundamentals of CANDU Reactor Physics