This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study the effects of the inlet velocity, the jet intensity and frequency, and the jet location on the mixing efficiency, 3-D numerical simulations of the micromixer have been carried out. It has been found that when the jet intensity and the frequency are fixed, the mixing efficiency increases when Re<50, and decreases when Re>50 with the best mixing efficiency achieved at Re=50. When the ratio of the jet velocity magnitude to the inlet velocity is taken as 10 and the jet frequency is 100Hz, the mixing index reaches the highest value. It has also been found that to get better mixing efficiency, the orifice of the synthetic jet should be asymmetrically located away from the channel’s centerline.

This content is only available via PDF.
You do not currently have access to this content.