A visual pool boiling experimental device based on ITO coating layer heater and high-speed shooting technology was established for studying the bubble behavior and heat transfer characteristics of saline solution, which is of great significance for ensuring heat transfer safety in nuclear power plants, steam injection boilers and seawater desalination. Volume of fluid method was applied to simulate numerically the liquid–vapor phase change by adding source terms in the continuity equation and energy equation. The predictions of the model are quantitatively verified against the experimental data. It can be found based on the experimental data that the pool boiling heat transfer coefficient is enhanced as the salt concentration increases. Visualization studies and numerical data have shown that the presence and precipitation of salt leads to a decrease in the detachment diameter and growth time of the bubble and an increase in the frequency of detachment, thereby increasing the pool boiling heat transfer coefficient.

This content is only available via PDF.
You do not currently have access to this content.