Secondary atomization is one of the most attractive and misunderstood effects in the combustion of microemulsified fuel blends. The occurrence of secondary atomization has been studied to determine its effects on improved combustion efficiency especially when low vapor pressure fuels are used. Several methods to detect microexplosion as alternative to secondary atomization have been considered including acoustic signal processing. As part of the physical characterization of an emulsified vegetable oil-methanol blend, microexplosion behavior of fuel blend droplets has been observed to take place under certain environmental conditions. Droplets microexplode as methanol surrounded by vegetable oil molecules flashes or microexplodes under intense temperature and intense droplet pressure. The droplets of emulsified methanol-in-oil break up forming tiny droplets with greater surface-to-volume ratio in the process. To understand the effects of emulsification on microexplosion, characterization of secondary atomization has been performed using a temperature probe, a high-speed camera and an acoustic sound signal processor. Experiments have been conducted at temperatures similar to those encountered in liquid fuel boilers. The acoustic signal data were analyzed using Fast Fourier Transform (FFT) to define and understand the overall microexplosion process. Also, the effect of temperature, droplet sizes and the percentage of methanol in the vegetable oil blend have been studied to understand what leads to a higher probability of microexplosion occurrence. A correlation between the analyzed acoustic signal data and high speed images were used to differentiate between the different microexplosion events. The results of the study can be useful in predicting the occurrence of microxplosion in liquid fuel boiler which should result in more complete combustion processes, reducing contaminant levels significantly.
Skip Nav Destination
ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels
July 8–12, 2012
Rio Grande, Puerto Rico, USA
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4478-6
PROCEEDINGS PAPER
Experimental Investigation of Microexplosion Phenomena in Emulsified Vegetable Oil-Methanol Blends
Jorge L. Alvarado,
Jorge L. Alvarado
Texas A&M University, College Station, TX
Search for other works by this author on:
Hyungseok Nam
Hyungseok Nam
Texas A&M University, College Station, TX
Search for other works by this author on:
Jorge L. Alvarado
Texas A&M University, College Station, TX
Hyungseok Nam
Texas A&M University, College Station, TX
Paper No:
HT2012-58311, pp. 205-212; 8 pages
Published Online:
July 24, 2013
Citation
Alvarado, JL, & Nam, H. "Experimental Investigation of Microexplosion Phenomena in Emulsified Vegetable Oil-Methanol Blends." Proceedings of the ASME 2012 Heat Transfer Summer Conference collocated with the ASME 2012 Fluids Engineering Division Summer Meeting and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. Volume 2: Heat Transfer Enhancement for Practical Applications; Fire and Combustion; Multi-Phase Systems; Heat Transfer in Electronic Equipment; Low Temperature Heat Transfer; Computational Heat Transfer. Rio Grande, Puerto Rico, USA. July 8–12, 2012. pp. 205-212. ASME. https://doi.org/10.1115/HT2012-58311
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Combustion Performance of Biodiesel and Diesel-Vegetable Oil Blends in a Simulated Gas Turbine Burner
J. Eng. Gas Turbines Power (May,2009)
High Pressure Homogeneous Nucleation of Bubbles within Superheated Binary Liquid Mixtures
J. Heat Transfer (May,1981)
Investigations on
a Compression Ignition Engine Using Animal Fats and Vegetable Oil as
Fuels
J. Energy Resour. Technol (June,2012)
Related Chapters
PSA Level 2 — NPP Ringhals 2 (PSAM-0156)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
The Impact of Plant Economics on the Design of Industrial Energy Systems
Industrial Energy Systems
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies